相關(guān)習(xí)題
 0  241091  241099  241105  241109  241115  241117  241121  241127  241129  241135  241141  241145  241147  241151  241157  241159  241165  241169  241171  241175  241177  241181  241183  241185  241186  241187  241189  241190  241191  241193  241195  241199  241201  241205  241207  241211  241217  241219  241225  241229  241231  241235  241241  241247  241249  241255  241259  241261  241267  241271  241277  241285  266669 

科目: 來源: 題型:填空題

7.已知數(shù)列{an}的奇數(shù)項(xiàng)依次構(gòu)成公差為d1的等差數(shù)列,偶數(shù)項(xiàng)依次構(gòu)成公差為d2的等差數(shù)列(其中d1,d2為整數(shù)),且對(duì)任意n∈N*,都有an<an+1,若a1=1,a2=2,且數(shù)列{an}的前10項(xiàng)和S10=75,則d1=,3,a8=11.

查看答案和解析>>

科目: 來源: 題型:填空題

6.已知△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足2cos2A+$\sqrt{3}$sin2A=2,b=1,S△ABC=$\frac{{\sqrt{3}}}{2}$,則A=$\frac{π}{3}$,$\frac{b+c}{sinB+sinC}$=2.

查看答案和解析>>

科目: 來源: 題型:填空題

5.拋物線y2=mx(m<0)的焦點(diǎn)與雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1的一個(gè)焦點(diǎn)重合,則m=-12,拋物線的準(zhǔn)線方程為x=3.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.過正四面體ABCD的頂點(diǎn)A作一個(gè)形狀為等腰三角形的截面,且使截面與底面BCD所成的角為75°,這樣的截面有( 。
A.6個(gè)B.12個(gè)C.16個(gè)D.18個(gè)

查看答案和解析>>

科目: 來源: 題型:選擇題

3.設(shè)f(x)的定義域是R,則下列命題中不正確的是( 。
A.若f(x)是奇函數(shù),則f(f(x))也是奇函數(shù)
B.若f(x)是周期函數(shù),則f(f(x))也是周期函數(shù)
C.若f(x)是單調(diào)遞減函數(shù),則f(f(x))也是單調(diào)遞減函數(shù)
D.若方程f(x)=x有實(shí)根,則方程f(f(x))=x也有實(shí)根

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知直線l是函數(shù)f(x)=2lnx+x2圖象的切線,當(dāng)l的斜率最小時(shí),直線l的方程是( 。
A.4x-y+3=0B.4x-y-3=0C.4x+y+3=0D.4x+y-3=0

查看答案和解析>>

科目: 來源: 題型:選擇題

1.已知復(fù)數(shù)z=$\frac{{4+\sqrt{2}i}}{1-i}$,i為虛數(shù)單位,則|z|=( 。
A.9B.3C.$\frac{{3\sqrt{2}}}{2}$D.9$\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:填空題

20.我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》的論割圓術(shù)中有:“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓合體而無所失矣”它體現(xiàn)了一種無限與有限轉(zhuǎn)化過程,比如在表達(dá)式1$+\frac{1}{1+\frac{1}{1+…}}$中“…”即代表無限次重復(fù),但原式卻是個(gè)定值,它可以通過方程1$+\frac{1}{x}$=x(x>0)求得x=$\frac{1+\sqrt{5}}{2}$,類似上述過程,則 $\sqrt{3+2\sqrt{3+2\sqrt{…}}}$=3.

查看答案和解析>>

科目: 來源: 題型:填空題

19.已知定義在R上的函數(shù)f(x)滿足f′(x)-f(x)=(1-2x)e-x,且f(0)=0.
則下列命題正確的是①②③.(寫出所有正確命題的序號(hào))
①R有極大值,沒有極小值;
②設(shè)曲線f(x)上存在不同兩點(diǎn)A,B處的切線斜率均為k,則k的取值范圍是-$\frac{1}{{e}^{2}}$<k<0;
③對(duì)任意x1,x2,∈(2,+∞)都有f($\frac{{x}_{1}{+x}_{2}}{2}$)≤$\frac{{f(x}_{1})+f{(x}_{2})}{2}$恒成立.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.已知集合A={x|$\frac{1}{2}$<2x≤2},B={x|y=ln(x-$\frac{1}{2}$)},則A∩B=( 。
A.$(\frac{1}{2},1]$B.(-1,1]C.$(-1,\frac{1}{2}]$D.

查看答案和解析>>

同步練習(xí)冊(cè)答案