相關(guān)習(xí)題
 0  246172  246180  246186  246190  246196  246198  246202  246208  246210  246216  246222  246226  246228  246232  246238  246240  246246  246250  246252  246256  246258  246262  246264  246266  246267  246268  246270  246271  246272  246274  246276  246280  246282  246286  246288  246292  246298  246300  246306  246310  246312  246316  246322  246328  246330  246336  246340  246342  246348  246352  246358  246366  266669 

科目: 來源: 題型:解答題

13.已知函數(shù)f(x)=ax2-4ln(x-1).
(Ⅰ)當(dāng)a=1時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若對一切x∈[2,e+1],f(x)≤4恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.在區(qū)間[$\frac{1}{2}$,2]上,函數(shù)f(x)=x2+px+q與g(x)=2x+$\frac{1}{x^2}$在同一點取得相同的最小值,那么f(x)在[$\frac{1}{2}$,2]上的最大值是( 。
A.$\frac{13}{4}$B.$\frac{5}{4}$C.8D.4

查看答案和解析>>

科目: 來源: 題型:填空題

11.如圖四邊形ABCD是邊長為1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,G為MC中點,則下列結(jié)論中正確的是①②④.
①MC⊥AN;             ②GB∥平面AMN;
③平面CMN⊥平面AMN;   ④平面DCM∥平面ABN.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知函數(shù)f(x)=ex-ax(a為常數(shù))的圖象與y軸交于點A,曲線y=f(x)在點A處的切線斜率為-1.
(1)求a的值及函數(shù)f(x)的極值;
(2)若關(guān)于x的不等式mf(x)+2mx≤(1-m)(e-x-1)在(0,+∞)上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

9.如圖,在三棱柱ABC-A′B′C′中,CC′⊥底面ABC,∠ACB=90°,AC=BC=CC′=a,E是A′C′的中點,F(xiàn)是AB的中點.
(1)求證:BC⊥平面ACC′A′;
(2)求證:EF∥平面BCC′B′;
(3)設(shè)二面角C′-AB-C的平面角為θ,求tanθ的值.

查看答案和解析>>

科目: 來源: 題型:解答題

8.如圖,AC是圓O的直徑,點B在圓O上,∠BAC=30°,BM⊥AC交AC于點M,EA⊥平面ABC,F(xiàn)C∥EA,AC=4,EA=3,F(xiàn)C=1.
(1)證明EM⊥BF;
(2)請在圖中作出平面ABC與平面BEF的交線(不要求證明)
(3)求平面BEF和平面ABC所成的銳二面角的正切值.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知函數(shù)f(x)=mx-lnx,(m>0).
(1)若m=1,求函數(shù)f(x)的極值;
(2)求函數(shù)f(x)在區(qū)間[1,e]上的最小值;
(3)若f(x)≤0恒成立,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知函數(shù)f(x)=ax3+2x2-a2x+b2在x=1處取得極大值,
(1)求a的值及f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的方程f(x)=$\frac{4}{9}$b在區(qū)間[0,2]上恰有三個解,求b的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.如圖,四棱柱ABCD-A1B1C1D1中,AA1⊥面ABCD,四邊形ABCD為梯形,AD∥BC,且AD=3BC.過A、C、D三點的平面記為a,BB1與a的交點為Q.則以下四個結(jié)論:①Q(mào)C∥A1D;②B1Q=2QB;③直線A1B與直線CD相交;④四棱柱被平面a分成的上下兩部分體積相等.其中正確的個數(shù)為( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{1}{3}$x3-4x.
(1)求f(x)的導(dǎo)數(shù)f′(x);
(2)求f(x)在閉區(qū)間[0,3]上的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊答案