相關(guān)習題
 0  246175  246183  246189  246193  246199  246201  246205  246211  246213  246219  246225  246229  246231  246235  246241  246243  246249  246253  246255  246259  246261  246265  246267  246269  246270  246271  246273  246274  246275  246277  246279  246283  246285  246289  246291  246295  246301  246303  246309  246313  246315  246319  246325  246331  246333  246339  246343  246345  246351  246355  246361  246369  266669 

科目: 來源: 題型:解答題

3.在如圖所示的幾何體中,四邊形ABCD是矩形,AB=2BC=4,四邊形CDEF是等腰梯形,EF∥DC,EF=2,且平面ABCD⊥平面CDEF,AF⊥CF.
(Ⅰ)過BD與AF平行的平面與CF交于點G.求證:G為CF的中點;
(Ⅱ)求二面角B-AF-D的余弦值.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.如圖,正方體ABCD-A1B1C1D1的棱長為1,E為A1B1的中點,給出下列四個命題:
①點E到平面ABC1D1的距離為$\frac{1}{2}$;
②直線BC與平面ABC1D1所稱角為45°;
③空間四邊形ABCD1在該正方體六個面內(nèi)射影面積的最小值為$\frac{1}{2}$;
④正方體的所有棱中,與AB,CC1均共面的棱共有5條,
其中正確命題的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:選擇題

1.已知O是棱長為a的正方體ABCD-A1B1C1D1的對角線的交點,平面α經(jīng)過點O,正方體的8個頂點到α的距離組成集合A,則A中的元素個數(shù)最多有(  )
A.3B.4C.5D.6

查看答案和解析>>

科目: 來源: 題型:填空題

20.對于函數(shù)y=f(x),若其定義域內(nèi)存在兩個實數(shù)m,n(m<n),使得x∈[m,n]時,f(x)的值域也是[m,n],則稱函數(shù)f(x)為“和諧函數(shù)”,若函數(shù)f(x)=k+$\sqrt{x+2}$是“和諧函數(shù)”,則實數(shù)k的取值范圍是-$\frac{9}{4}$<k≤-2.

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$-alnx(a>0).
(Ⅰ)若a=2,求函數(shù)f(x)的極值;
(Ⅱ)若?x>0,不等式f(x)-a≥0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

18.己知函數(shù)f(x)=$\frac{ax}{{x}^{2}+b}$在x=1處取得極值為2,設函數(shù)y=f(x)圖象上任意一點(x,f(x))處的切線斜率為k.
(1)求實數(shù)k的取值范圍;
(2)若對于任意0<x1<x2<1,存在k,使得k=$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$,求證x1<|x|<x2

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知以橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)短軸上的一個頂點和橢圓的兩個焦點為頂點的三角形為正三角形,且面積為$\sqrt{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設動直線l交橢圓C于P,Q兩點,且原點O到直線l的距離為1,問:是否存在這樣的直線l,使OP⊥OQ?若存在,求出直線l的方程:若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知函數(shù)f(x)=x,g(x)=lnx.
(1)求函數(shù)h(x)=f(x)-g(x)的極值;
(2)若?a∈(0,+∞),使得函數(shù)y=af(x)-g(x)在(0,e]上的最小值是3(其中e為自然對數(shù)的底數(shù)),試求a的值.

查看答案和解析>>

科目: 來源: 題型:解答題

15.某汽車銷售店以8萬元/輛的價格購進了某品牌的汽車.根據(jù)以往的銷售分析得出,當售價定為10萬元/輛時,每年可銷售100輛該品牌的汽車,當每輛的銷售每提高1千元時,年銷售量就減少2輛.
(1)若要獲利最大年利潤,售價應定為多少萬元/輛?
(2)該銷售店為了提高銷售業(yè)績,推出了分期付款的促銷活動.已知銷售一輛該品牌的汽車,若一次性付款,其利潤為2萬元;若分2期或3期付款,其利潤為2.5萬元;若分4期或5期付款,其利潤為3萬元.該銷售店對最近分期付款的10位購車情況進行了統(tǒng)計,統(tǒng)計結(jié)果如下表.
付款方式一次性分2期分3期分4期分5期
頻數(shù)11323
若X表示其中任意兩輛的利潤之差的絕對值,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$的右焦點為F,點P在橢圓上,且PF⊥x軸,|PF|=$\frac{1}{2}$,橢圓C的離心率為$\frac{\sqrt{3}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若P1P2是橢圓上不同的兩點,P1P2⊥x軸,圓E過F,P1,P2三點,且橢圓上任意一點都不在圓E內(nèi),求圓E的方程.

查看答案和解析>>

同步練習冊答案