相關(guān)習(xí)題
 0  246637  246645  246651  246655  246661  246663  246667  246673  246675  246681  246687  246691  246693  246697  246703  246705  246711  246715  246717  246721  246723  246727  246729  246731  246732  246733  246735  246736  246737  246739  246741  246745  246747  246751  246753  246757  246763  246765  246771  246775  246777  246781  246787  246793  246795  246801  246805  246807  246813  246817  246823  246831  266669 

科目: 來源: 題型:選擇題

3.在空間中,設(shè)直線l的方向向量為$\overrightarrow{a}$,平面α的法向量為$\overrightarrow$,對(duì)于原命題“若$\overrightarrow{a}$•$\overrightarrow$=0,則l∥α”,下列判斷正確的是( 。
A.原命題為真,否命題為真B.原命題為假,否命題為假
C.原命題為假,否命題為真D.原命題為真,否命題為假

查看答案和解析>>

科目: 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=ax-(k-1)a-x(a>0且a≠1)是定義域?yàn)镽的奇函數(shù).
(1)若f(1)>0,試判斷函數(shù)f(x)的單調(diào)性,并求使不等式f(sin2θ+cos2θ)+f(1-tcosθ)<0對(duì)所有的θ∈(0,$\frac{π}{2}$)均成立的t的取值范圍;
(2)若f(1)=$\frac{3}{2}$,g(x)=a2x+a-2x-2mf(x),且g(x)在[1,+∞)上的最小值為-1,求m的值.

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,ω>0,0<φ<$\frac{π}{2}$)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)=f($\frac{x}{2}$-$\frac{π}{12}$)•f($\frac{x}{2}$+$\frac{π}{12}$)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目: 來源: 題型:解答題

20.如圖(1),等腰梯形OABC的上、下底邊長分別為1、3,底角為∠COA=60°.記該梯形內(nèi)部位于直線x=t(t>0)左側(cè)部分的面積為f(t).試求f(t)的解析式,并在如圖(2)給出的坐標(biāo)系中畫出函數(shù)y=f(t)的圖象.

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$是同一平面內(nèi)的三個(gè)向量,其中$\overrightarrow{a}$=(2,1).
(1)若|$\overrightarrow{c}$|=3$\sqrt{5}$,且$\overrightarrow{c}$∥$\overrightarrow{a}$,求$\overrightarrow{c}$的坐標(biāo);
(2)若|$\overrightarrow$|=$\frac{\sqrt{5}}{2}$,且$\overrightarrow{a}$+2$\overrightarrow$與2$\overrightarrow{a}$-$\overrightarrow$垂直,求$\overrightarrow{a}$與$\overrightarrow$的夾角θ.

查看答案和解析>>

科目: 來源: 題型:填空題

18.已知函數(shù)f(x)=$\frac{2{a}^{x}}{{a}^{x}-1}$+loga$\frac{x-1}{x+1}$(a>0且a≠1),且f(m)=7(m≠0),則f(-m)=-5.

查看答案和解析>>

科目: 來源: 題型:填空題

17.如圖,OA為圓C的直徑,有向線段OB與圓C交點(diǎn)P,且$\overrightarrow{OP}$=$\frac{1}{2}\overrightarrow{OB}$.若|$\overrightarrow{OB}$|=$\sqrt{3}$,則$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\frac{3}{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

16.求值:tan40°+tan20°+$\sqrt{3}$tan40°•tan20°=$\sqrt{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知sinx+cosx=$\sqrt{1+sin2x}$,則x的取值范圍是(  )
A.[-$\frac{π}{4}$+kπ,$\frac{π}{4}$+kπ](k∈Z)B.[$\frac{π}{4}$+kπ,$\frac{3π}{4}$+kπ](k∈Z)
C.[-$\frac{π}{4}$+2kπ,$\frac{3π}{4}$+2kπ](k∈Z)D.[$\frac{π}{4}$+2kπ,$\frac{5π}{4}$+2kπ](k∈Z)

查看答案和解析>>

科目: 來源: 題型:選擇題

14.某幾何體的三視圖如圖所示,則該幾何體的外接球的體積為( 。
A.4$\sqrt{3}$πB.$\frac{4\sqrt{3}π}{3}$C.4$\sqrt{2}$πD.$\frac{4\sqrt{2}π}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案