相關(guān)習(xí)題
 0  251905  251913  251919  251923  251929  251931  251935  251941  251943  251949  251955  251959  251961  251965  251971  251973  251979  251983  251985  251989  251991  251995  251997  251999  252000  252001  252003  252004  252005  252007  252009  252013  252015  252019  252021  252025  252031  252033  252039  252043  252045  252049  252055  252061  252063  252069  252073  252075  252081  252085  252091  252099  266669 

科目: 來(lái)源: 題型:填空題

18.在等比數(shù)列{an}中,a1=1,公比q=2,則a4的值為8.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

17.設(shè)定義域?yàn)镽的函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{|x-1|}(x≠1)}\\{1(x=1)}\end{array}\right.$,若關(guān)于x的方程f2(x)+bf(x)+c=0有5個(gè)不同的實(shí)數(shù)解,則b+c值為(  )
A.0B.1C.-1D.不能確定

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

16.已知集合$A=\left\{{x{{\left|{({\frac{1}{2}})}\right.}^x}>1}\right\}$,集合B={x|lgx<0}則A∩B(  )
A.{x|x<0}B.{x|0<x<1}C.{x|x>1}D.φ

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

15.試推導(dǎo)焦點(diǎn)在y軸上的橢圓的標(biāo)準(zhǔn)方程:$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{^{2}}=1(a>b>0)$.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

14.(Ⅰ)已知某橢圓的左右焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),且經(jīng)過(guò)點(diǎn)$P(\frac{1}{2},\frac{{\sqrt{14}}}{4})$,求該橢圓的標(biāo)準(zhǔn)方程以及離心率;
(Ⅱ)某圓錐曲線以坐標(biāo)軸為對(duì)稱軸,中心為坐標(biāo)原點(diǎn),且過(guò)點(diǎn)$(2,\sqrt{3}),(\frac{3}{2},-\frac{{\sqrt{6}}}{4})$,求該曲線的標(biāo)準(zhǔn)方程、焦點(diǎn)以及離心率.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

13.橢圓2x2+3y2=1的焦點(diǎn)坐標(biāo)為$(±\frac{{\sqrt{6}}}{6},0)$.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

12.若橢圓$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{m}$=1的離心率為$\frac{1}{2}$,則m=( 。
A.$\frac{9}{4}$B.4C.$\frac{9}{4}$或4D.$\frac{3}{2}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

11.設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2+mx+m+1,則f(-3)=( 。
A.-3B.3C.-6D.6

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

10.已知定義域?yàn)镽的函數(shù)$f(x)=\frac{{b-{2^x}}}{{{2^{x+1}}+a}}$是奇函數(shù),則a+b=3.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

9.如圖,在平面直角坐標(biāo)系xoy中,橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{6}}}{3}$,直線l與x軸交于點(diǎn)E,與橢圓C交于A、B兩點(diǎn).當(dāng)直線l垂直于x軸且點(diǎn)E為橢圓C的右焦點(diǎn)時(shí),弦AB的長(zhǎng)為$\frac{{2\sqrt{6}}}{3}$.
(1)求橢圓C的方程;
(2)若點(diǎn)E的坐標(biāo)為$(\frac{{\sqrt{3}}}{2},0)$,點(diǎn)A在第一象限且橫坐標(biāo)為$\sqrt{3}$,
連結(jié)點(diǎn)A與原點(diǎn)O的直線交橢圓C于另一點(diǎn)P,求△PAB的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案