相關(guān)習(xí)題
 0  252296  252304  252310  252314  252320  252322  252326  252332  252334  252340  252346  252350  252352  252356  252362  252364  252370  252374  252376  252380  252382  252386  252388  252390  252391  252392  252394  252395  252396  252398  252400  252404  252406  252410  252412  252416  252422  252424  252430  252434  252436  252440  252446  252452  252454  252460  252464  252466  252472  252476  252482  252490  266669 

科目: 來源: 題型:選擇題

1.下列各函數(shù)中,為指數(shù)函數(shù)的是 ( 。
A.y=3•2xB.y=x-2C.y=πxD.y=(-3)x

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知A(1,2,3)、B(2,1,2)、C(1,1,2),O為坐標(biāo)原點(diǎn),點(diǎn)D在直線OC上運(yùn)動(dòng),則當(dāng)$\overrightarrow{DA}$•$\overrightarrow{DB}$取最小值時(shí),點(diǎn)D的坐標(biāo)為( 。
A.($\frac{4}{3}$,$\frac{4}{3}$,$\frac{4}{3}$)B.($\frac{8}{3}$,$\frac{4}{3}$,$\frac{8}{3}$)C.($\frac{4}{3}$,$\frac{4}{3}$,$\frac{8}{3}$)D.($\frac{8}{3}$,$\frac{8}{3}$,$\frac{4}{3}$)

查看答案和解析>>

科目: 來源: 題型:選擇題

19.橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,過F1作垂直于x軸的直線與橢圓相交,其中一個(gè)交點(diǎn)為P,則|PF2|的值為( 。
A.$\frac{47}{5}$B.$\frac{34}{5}$C.$\frac{18}{5}$D.$\frac{16}{5}$

查看答案和解析>>

科目: 來源: 題型:解答題

18.求下列函數(shù)的定義域:
(1)y=5${\;}^{\sqrt{x-1}}$;
(2)y=$\sqrt{(\frac{1}{5})^{x}-25}$;
(3)y=$\frac{1}{1-{3}^{x}}$;
(4)y=$\frac{\sqrt{16-{2}^{x}}}{x+4}$.

查看答案和解析>>

科目: 來源: 題型:解答題

17.?ABCD中,已知A(-1,0),B(3,0),C(1,-5),求D的坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:解答題

16.設(shè)△ABC的兩頂點(diǎn)分別是B(1,1)和C(3,6),求第三個(gè)頂點(diǎn)A的軌跡方程,使|AB|=|BC|.

查看答案和解析>>

科目: 來源: 題型:解答題

15.等差數(shù)列{an}中,a2=4,a4+a7=15.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2an-2+n,求{bn}的前n項(xiàng)和Sn
(3)求數(shù)列{$\frac{1}{{{a}_{n}}^{2}-1}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來源: 題型:填空題

14.已知集合U=R,A={x|x2+$\frac{{y}^{2}}{4}$=1},B={y|y=x+1,x∈A},則(∁uA)∩(∁UB)=(-∞,-1)∪(2,+∞).

查看答案和解析>>

科目: 來源: 題型:選擇題

13.命題p:“x>0,y>0“,命題q:“xy>0“,則命題p是命題q的( 。
A.充要條件B.必要而不充分條件
C.充分而不必要條件D.既不充分也不必要條件

查看答案和解析>>

科目: 來源: 題型:選擇題

12.已知函數(shù)y=sin(ωx+θ)(0<θ<π,ω>0)為偶函數(shù),則θ=( 。
A.2kπ+$\frac{π}{2}$(k∈Z)B.kπ+$\frac{π}{2}$(k∈Z)C.$\frac{π}{2}$D.π

查看答案和解析>>

同步練習(xí)冊答案