科目: 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且bsinA= acosB. (Ⅰ)求角B的大。
(Ⅱ)若b=3,sinC=2sinA,求△ABC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】根據(jù)下列條件求雙曲線的標(biāo)準(zhǔn)方程:
(1)經(jīng)過點(diǎn)(,3),且一條漸近線方程為4x+3y=0.
(2)P(0,6)與兩個(gè)焦點(diǎn)的連線互相垂直,與兩個(gè)頂點(diǎn)連線的夾角為.
查看答案和解析>>
科目: 來源: 題型:
【題目】要得到函數(shù)y=cos(2x+1)的圖象,只要將函數(shù)y=cos2x的圖象( )
A.向左平移1個(gè)單位
B.向右平移1個(gè)單位
C.向左平移 個(gè)單位
D.向右平移 個(gè)單位
查看答案和解析>>
科目: 來源: 題型:
【題目】已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1、F2在坐標(biāo)軸上,離心率為且過點(diǎn)(4,- ).
(1)求雙曲線方程;
(2)若點(diǎn)M(3,m)在雙曲線上,求證:點(diǎn)M在以F1F2為直徑的圓上;
(3)求△F1MF2的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知在銳角△ABC中,a,b,c為角A,B,C所對(duì)的邊,且(b﹣2c)cosA=a﹣2acos2 .
(1)求角A的值;
(2)若a= ,則求b+c的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】【2016高考北京文數(shù)】已知橢圓C:過點(diǎn)A(2,0),B(0,1)兩點(diǎn).
(I)求橢圓C的方程及離心率;
(Ⅱ)設(shè)P為第三象限內(nèi)一點(diǎn)且在橢圓C上,直線PA與y軸交于點(diǎn)M,直線PB與x軸交于點(diǎn)N,求證:四邊形ABNM的面積為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】【廣東省佛山市2017屆高三4月教學(xué)質(zhì)量檢測(cè)(二)數(shù)學(xué)文】已知橢圓: ()的焦距為4,左、右焦點(diǎn)分別為、,且與拋物線: 的交點(diǎn)所在的直線經(jīng)過.
(Ⅰ)求橢圓的方程;
(Ⅱ)過的直線與交于, 兩點(diǎn),與拋物線無公共點(diǎn),求的面積的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=2sinxcosx+2cos(x+ )cos(x﹣ ).
(1)求f(x)的單調(diào)遞減區(qū)間;
(2)設(shè)α∈(0,π),f( )= ,求sinα的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列{xn}滿足x1=1,x2=λ,并且 =λ (λ為非零常數(shù),n=2,3,4,…). (Ⅰ)若x1 , x3 , x5成等比數(shù)列,求λ的值;
(Ⅱ)設(shè)0<λ<1,常數(shù)k∈N* , 證明 .
查看答案和解析>>
科目: 來源: 題型:
【題目】【2016高考山東文數(shù)】已知橢圓C:(a>b>0)的長軸長為4,焦距為2.
(I)求橢圓C的方程;
(Ⅱ)過動(dòng)點(diǎn)M(0,m)(m>0)的直線交x軸與點(diǎn)N,交C于點(diǎn)A,P(P在第一象限),且M是線段PN的中點(diǎn).過點(diǎn)P作x軸的垂線交C于另一點(diǎn)Q,延長線QM交C于點(diǎn)B.
(i)設(shè)直線PM、QM的斜率分別為k、k',證明為定值.
(ii)求直線AB的斜率的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com