科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,點P是圓x2+y2=4上一動點,PD⊥x軸于點D,記滿足 = ( + )的動點M的軌跡為Γ. (Ⅰ)求軌跡Γ的方程;
(Ⅱ)已知直線l:y=kx+m與軌跡F交于不同兩點A,B,點G是線段AB中點,射線OG交軌跡Γ于點Q,且 =λ ,λ∈R.
①證明:λ2m2=4k2+1;
②求△AOB的面積S(λ)的解析式,并計算S(λ)的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】橢圓與的中心在原點,焦點分別在軸與軸上,它們有相同的離心率,并且的短軸為的長軸,與的四個焦點構(gòu)成的四邊形面積是.
(1)求橢圓與的方程;
(2)設(shè)是橢圓上非頂點的動點,與橢圓長軸兩個頂點,的連線,分別與橢圓交于,點.
(i)求證:直線,斜率之積為常數(shù);
(ii)直線與直線的斜率之積是否為常數(shù)?若是,求出該值;若不是,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】2016年10月,繼微信支付對提現(xiàn)轉(zhuǎn)賬收費后,支付寶也開始對提現(xiàn)轉(zhuǎn)賬收費,隨著這兩大目前用戶使用粘度最高的第三方支付開始收費,業(yè)內(nèi)人士分析,部分對價格敏感的用戶或?qū)⒒亓髦羵鹘y(tǒng)銀行體系,某調(diào)查機構(gòu)對此進行調(diào)查,并從參與調(diào)查的數(shù)萬名支付寶用戶中隨機選取200人,把這200人分為3類:認為使用支付寶方便,仍使用支付寶提現(xiàn)轉(zhuǎn)賬的用戶稱為“類用戶”;根據(jù)提現(xiàn)轉(zhuǎn)賬的多少確定是否使用支付寶的用戶稱為“類用戶”;提前將支付寶賬戶內(nèi)的資金全部提現(xiàn),以后轉(zhuǎn)賬全部通過銀行的用戶稱為“類用戶”,各類用戶的人數(shù)如圖所示:
同時把這200人按年齡分為青年人組與中老年人組,制成如圖所示的列聯(lián)表:
類用戶 | 非類用戶 | 合計 | |
青年 | 20 | ||
中老年 | 40 | ||
合計 | 200 |
(Ⅰ)完成列聯(lián)表并判斷是否有99.5%的把握認為“類用戶與年齡有關(guān)”;
(Ⅱ)從這200人中按類用戶、類用戶、類用戶進行分層抽樣,從中抽取10人,再從這10人中隨機抽取4人,求在這4人中類用戶、類用戶、類用戶均存在的概率;
(Ⅲ)把頻率作為概率,從支付寶所有用戶(人數(shù)很多)中隨機抽取3人,用表示所選3人中類用戶的人數(shù),求的分布列與期望.
附:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知定義域為R的函數(shù)f(x)是奇函數(shù),當x≥0時,f(x)=|x﹣a2|﹣a2 , 且對x∈R,恒有f(x﹣2)<f(x),則實數(shù)a的取值范圍為( )
A.
B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】某工廠共有10臺機器,生產(chǎn)一種儀器元件,由于受生產(chǎn)能力和技術(shù)水平等因素限制,會產(chǎn)生一定數(shù)量的次品.根據(jù)經(jīng)驗知道,若每臺機器產(chǎn)生的次品數(shù)P(萬件)與每臺機器的日產(chǎn)量x(萬件)(4≤x≤12)之間滿足關(guān)系:P=0.1x2﹣3.2lnx+3,已知每生產(chǎn)1萬件合格的元件可以盈利2萬元,但每產(chǎn)生1萬件裝次品將虧損1萬元.(利潤=盈利﹣虧損) (I)試將該工廠每天生產(chǎn)這種元件所獲得的利潤y(萬元)表示為x的函數(shù);
(II)當每臺機器的日產(chǎn)量x(萬件)寫為多少時所獲得的利潤最大,最大利潤為多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知在四棱錐P﹣ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分別是線段AB、BC的中點.
(Ⅰ)證明:PF⊥FD;
(Ⅱ)判斷并說明PA上是否存在點G,使得EG∥平面PFD;
(Ⅲ)若PB與平面ABCD所成的角為45°,求二面角A﹣PD﹣F的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓: 的離心率為,且過點.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點任作一條直線與橢圓相交于,兩點,試問在軸上是否存在定點,使得直線與直線關(guān)于軸對稱?若存在,求出點的坐標;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)x∈R,定義符號函數(shù)sgnx= ,則( )
A.|x|=x|sgnx|
B.|x|=xsgn|x|
C.|x|=|x|sgnx
D.|x|=xsgnx
查看答案和解析>>
科目: 來源: 題型:
【題目】已知等差數(shù)列{an}的首項a1=3,且公差d≠0,其前n項和為Sn , 且a1 , a4 , a13分別是等比數(shù)列{bn}的b2 , b3 , b4 . (Ⅰ)求數(shù)列{an}與{bn}的通項公式;
(Ⅱ)證明 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com