科目: 來源: 題型:
【題目】已知數(shù)列的滿足,前項(xiàng)的和為,且.
(1)求的值;
(2)設(shè),證明:數(shù)列是等差數(shù)列;
(3)設(shè),若,求對所有的正整數(shù)都有成立的的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】若函數(shù)在上存在唯一的滿足, 那么稱函數(shù)是上的“單值函數(shù)”.已知函數(shù)是上的“單值函數(shù)”,當(dāng)實(shí)數(shù)取最小值時(shí),函數(shù)在上恰好有兩點(diǎn)零點(diǎn),則實(shí)數(shù)的取值范圍是___________.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù), .
(1)當(dāng)在處的切線與直線垂直時(shí),方程有兩相異實(shí)數(shù)根,求的取值范圍;
(2)若冪函數(shù)的圖象關(guān)于軸對稱,求使不等式在上恒成立的的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】(某保險(xiǎn)公司有一款保險(xiǎn)產(chǎn)品的歷史戶獲益率(獲益率=獲益÷保費(fèi)收入)的頻率分布直方圖如圖所示:
(Ⅰ)試估計(jì)平均收益率;
(Ⅱ)根據(jù)經(jīng)驗(yàn)若每份保單的保費(fèi)在元的基礎(chǔ)上每增加元,對應(yīng)的銷量(萬份)與(元)有較強(qiáng)線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如下組與的對應(yīng)數(shù)據(jù):
(元) | |||||
銷量(萬份) |
(ⅰ)根據(jù)數(shù)據(jù)計(jì)算出銷量(萬份)與(元)的回歸方程為;
(ⅱ)若把回歸方程當(dāng)作與的線性關(guān)系,用(Ⅰ)中求出的平均獲益率估計(jì)此產(chǎn)品的獲益率,每份保單的保費(fèi)定為多少元時(shí)此產(chǎn)品可獲得最大獲益,并求出該最大獲益.
參考公示:
查看答案和解析>>
科目: 來源: 題型:
【題目】已知下列命題:
①命題“, ”的否定是:“, ”;
②若樣本數(shù)據(jù)的平均值和方差分別為和則數(shù)據(jù)的平均值和標(biāo)準(zhǔn)差分別為, ;
③兩個(gè)事件不是互斥事件的必要不充分條件是兩個(gè)事件不是對立事件;
④在列聯(lián)表中,若比值與相差越大,則兩個(gè)分類變量有關(guān)系的可能性就越大.
⑤已知為兩個(gè)平面,且, 為直線.則命題:“若,則”的逆命題和否命題均為假命題.
⑥設(shè)定點(diǎn)、,動點(diǎn)滿足條件為正常數(shù)),則的軌跡是橢圓.其中真命題的個(gè)數(shù)為( )
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
科目: 來源: 題型:
【題目】【2018江西蓮塘一中、臨川二中高三上學(xué)期第一次聯(lián)考】二次函數(shù)的圖象過原點(diǎn),對,恒有成立,設(shè)數(shù)列滿足.
(I)求證:對,恒有成立;
(II)求函數(shù)的表達(dá)式;
(III)設(shè)數(shù)列前項(xiàng)和為,求的值.
【答案】(I)證明見解析;(II);(III)2018.
【解析】試題分析:
(1)左右兩側(cè)做差,結(jié)合代數(shù)式的性質(zhì)可證得,即對,恒有:成立;
(2)由已知條件可設(shè),給定特殊值,令,從而可得:,則,,從而有恒成立,據(jù)此可知,則.
(3)結(jié)合(1)(2)的結(jié)論整理計(jì)算可得:,據(jù)此分組求和有:.
試題解析:
(1)(僅當(dāng)時(shí),取“=”)
所以恒有:成立;
(2)由已知條件可設(shè),則中,令,
從而可得:,所以,即,
又因?yàn)?/span>恒成立,即恒成立,
當(dāng)時(shí),,不合題意舍去,
當(dāng)時(shí),即,所以,所以.
(3),
所以,
即.
【題型】解答題
【結(jié)束】
22
【題目】已知函數(shù) 為定義在上的奇函數(shù).
(1)求函數(shù)的值域;
(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】【題目】【2018江西蓮塘一中、臨川二中高三上學(xué)期第一次聯(lián)考】二次函數(shù)的圖象過原點(diǎn),對,恒有成立,設(shè)數(shù)列滿足.
(I)求證:對,恒有成立;
(II)求函數(shù)的表達(dá)式;
(III)設(shè)數(shù)列前項(xiàng)和為,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)的一條對稱軸為,且最高點(diǎn)的縱坐標(biāo)是.
(1)求的最小值及此時(shí)函數(shù)的最小正周期、初相;
(2)在(1)的情況下,設(shè),求函數(shù)在上的最大值和最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】共享單車的推廣給消費(fèi)者帶來全新消費(fèi)體驗(yàn),迅速贏得廣大消費(fèi)者的青睞,然而,同時(shí)也暴露出管理、停放、服務(wù)等方面的問題,為了了解公眾對共享單車的態(tài)度(提倡或不提倡),某調(diào)查小組隨機(jī)地對不同年齡段50人進(jìn)行調(diào)查,將調(diào)查情況整理如下表:
并且,年齡在和的人中持“提倡”態(tài)度的人數(shù)分別為5和3,現(xiàn)從這兩個(gè)年齡段中隨機(jī)抽取2人征求意見.
(Ⅰ)求年齡在中被抽到的2人都持“提倡”態(tài)度的概率;
(Ⅱ)求年齡在中被抽到的2人至少1人持“提倡”態(tài)度的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com