相關(guān)習(xí)題
 0  261524  261532  261538  261542  261548  261550  261554  261560  261562  261568  261574  261578  261580  261584  261590  261592  261598  261602  261604  261608  261610  261614  261616  261618  261619  261620  261622  261623  261624  261626  261628  261632  261634  261638  261640  261644  261650  261652  261658  261662  261664  261668  261674  261680  261682  261688  261692  261694  261700  261704  261710  261718  266669 

科目: 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,解不等式;

2)畫出該函數(shù)的圖象,并寫出該函數(shù)的單調(diào)區(qū)間(不用證明);

3)若函數(shù)恰有3個不同零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】兩地相距150千米,某人開汽車以60千米/小時的速度從地到達(dá)地,在地停留1小時后再以50千米/小時的速度返回.

1)試把汽車離開地的距離(千米)表示為時間(小時)的函數(shù);

2)根據(jù)(1)中的函數(shù)表達(dá)式,求出汽車距離A100千米時的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】

某初級中學(xué)共有學(xué)生2000名,各年級男、女生人數(shù)如下表:


初一年級

初二年級

初三年級

女生

373

x

y

男生

377

370

z

已知在全校學(xué)生中隨機抽取1名,抽到初二年級女生的概率是0.19.

x的值;

現(xiàn)用分層抽樣的方法在全校抽取48名學(xué)生,問應(yīng)在初三年級抽取多少名?

已知y245,z245,求初三年級中女生比男生多的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中點。

求證:(1)PA∥平面BDE ;

(2)平面PAC平面BDE.

查看答案和解析>>

科目: 來源: 題型:

【題目】某連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額如下表:

商店名稱

A

B

C

D

E

銷售額x/千萬元

3

5

6

7

9

利潤額y/百萬元

2

3

3

4

5

1)畫出散點圖,觀察散點圖,說明兩個變量是否線性相關(guān);

2)用最小二乘法計算利潤額y對銷售額x的線性回歸方程;

3)當(dāng)銷售額為4千萬元時,估計利潤額的大小.

(參考公式:

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-4:極坐標(biāo)與參數(shù)方程

在極坐標(biāo)系下,已知圓O和直線

1求圓O和直線l的直角坐標(biāo)方程;

2當(dāng)時,求直線l與圓O公共點的一個極坐標(biāo)

查看答案和解析>>

科目: 來源: 題型:

【題目】某中學(xué)團委組織了紀(jì)念抗日戰(zhàn)爭勝利73周年的知識競賽,從參加競賽的學(xué)生中抽出60名學(xué)生,將其成績(均為整數(shù))分成六段,,,后,畫出如圖所示的部分頻率分布直方圖.觀察圖形給出的信息,回答下列問題:

1)求第四組的頻率,并補全這個頻率分布直方圖;

2)估計這次競賽的及格率(60分及以上為及格)和平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表)

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知分別為橢圓的左、右焦點,且橢圓經(jīng)過點和點,其中為橢圓的離心率.

(1)求橢圓的方程;

(2)過點的直線橢圓于另一點,點在直線上,且.若,求直線的斜率.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù) .

(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(2)是否存在實數(shù),使得至少有一個,使成立,若存在,求出實數(shù)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在軸,離心率為,且長軸長是短軸長的倍.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)過橢圓左焦點的直線 兩點,若對滿足條件的任意直線,不等式 恒成立,求的最小值.

查看答案和解析>>

同步練習(xí)冊答案