科目: 來源: 題型:
【題目】已知橢圓: 的左、右焦點分別為, ,且離心率為, 為橢圓上任意一點,當(dāng)時, 的面積為1.
(1)求橢圓的方程;
(2)已知點是橢圓上異于橢圓頂點的一點,延長直線, 分別與橢圓交于點, ,設(shè)直線的斜率為,直線的斜率為,求證: 為定值.
【答案】(1);(2)
【解析】試題分析:(1)設(shè)由題,由此求出,可得橢圓的方程;
(2)設(shè), ,
當(dāng)直線的斜率不存在時,可得;
當(dāng)直線的斜率不存在時,同理可得.
當(dāng)直線、的斜率存在時,,
設(shè)直線的方程為,則由消去通過運算可得
,同理可得,由此得到直線的斜率為,
直線的斜率為,進而可得.
試題解析:(1)設(shè)由題,
解得,則,
橢圓的方程為.
(2)設(shè), ,
當(dāng)直線的斜率不存在時,設(shè),則,
直線的方程為代入,可得,
, ,則,
直線的斜率為,直線的斜率為,
,
當(dāng)直線的斜率不存在時,同理可得.
當(dāng)直線、的斜率存在時,,
設(shè)直線的方程為,則由消去可得:
,
又,則,代入上述方程可得
,
,則
,
設(shè)直線的方程為,同理可得,
直線的斜率為,
直線的斜率為,
.
所以,直線與的斜率之積為定值,即.
【題型】解答題
【結(jié)束】
21
【題目】已知函數(shù), ,在處的切線方程為.
(1)求, ;
(2)若方程有兩個實數(shù)根, ,且,證明: .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓,直線與圓相交于不同的兩點,點是線段的中點。
(1)求直線的方程;
(2)是否存在與直線平行的直線,使得與與圓相交于不同的兩點,不經(jīng)過點,且的面積最大?若存在,求出的方程及對應(yīng)的的面積S;若不存在,請說明理由。
查看答案和解析>>
科目: 來源: 題型:
【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎勵1元;乙方案:底薪140元,每日前55單沒有獎勵,超過55單的部分每單獎勵12元.
(1)請分別求出甲、乙兩種薪酬方案中日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式;
(2)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)與天數(shù)滿足以下表格:
日均派送單數(shù) | 52 | 54 | 56 | 58 | 60 |
頻數(shù)(天) | 20 | 30 | 20 | 20 | 10 |
回答下列問題:
①根據(jù)以上數(shù)據(jù),設(shè)每名派送員的日薪為(單位:元),試分別求出這100天中甲、乙兩種方案的日薪平均數(shù)及方差;
②結(jié)合①中的數(shù)據(jù),根據(jù)統(tǒng)計學(xué)的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說明你的理由.
(參考數(shù)據(jù): , , , , , , , , )
【答案】(1);(2)見解析
【解析】試題分析:(1)甲方案:底薪100元,每派送一單獎勵1元;乙方案:底薪140元,每日前55單沒有獎勵,超過55單的部分每單獎勵12元. 求出甲、乙兩種薪酬方案中日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式;
①、由表格可知,甲方案中,日薪為152元的有20天,日薪為154元的有30天,日薪為156元的有20天,日薪為158元的有20天,日薪為160元的有10天,由此可求出這100天中甲方案的日薪平均數(shù)及方差:同理可求出這100天中乙兩種方案的日薪平均數(shù)及方差,
②不同的角度可以有不同的答案
試題解析:((1)甲方案中派送員日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式為: ,
乙方案中派送員日薪(單位:元)與送單數(shù)的函數(shù)關(guān)系式為:
,
(2)①、由表格可知,甲方案中,日薪為152元的有20天,日薪為154元的有30天,日薪為156元的有20天,日薪為158元的有20天,日薪為160元的有10天,則
,
,
乙方案中,日薪為140元的有50天,日薪為152元的有20天,日薪為176元的有20天,日薪為200元的有10天,則
,
②、答案一:
由以上的計算可知,雖然,但兩者相差不大,且遠小于,即甲方案日薪收入波動相對較小,所以小明應(yīng)選擇甲方案.
答案二:
由以上的計算結(jié)果可以看出, ,即甲方案日薪平均數(shù)小于乙方案日薪平均數(shù),所以小明應(yīng)選擇乙方案.
【題型】解答題
【結(jié)束】
20
【題目】已知橢圓: 的左、右焦點分別為, ,且離心率為, 為橢圓上任意一點,當(dāng)時, 的面積為1.
(1)求橢圓的方程;
(2)已知點是橢圓上異于橢圓頂點的一點,延長直線, 分別與橢圓交于點, ,設(shè)直線的斜率為,直線的斜率為,求證: 為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓,直線與圓相交于不同的兩點,點是線段的中點。
(1)求直線的方程;
(2)是否存在與直線平行的直線,使得與與圓相交于不同的兩點,不經(jīng)過點,且的面積最大?若存在,求出的方程及對應(yīng)的的面積S;若不存在,請說明理由。
查看答案和解析>>
科目: 來源: 題型:
【題目】四棱錐的底面為直角梯形,,,,為正三角形.
(1)點為棱上一點,若平面,,求實數(shù)的值;
(2)求點B到平面SAD的距離.
【答案】(1);(2)
【解析】試題分析:(1)由平面,可證,進而證得四邊形為平行四邊形,根據(jù),可得;
(2)利用等體積法可求點到平面的距離.
試題解析:((1)因為平面SDM,
平面ABCD,
平面SDM 平面ABCD=DM,
所以,
因為,所以四邊形BCDM為平行四邊形,又,所以M為AB的中點.
因為,
.
(2)因為 , ,
所以平面,
又因為平面,
所以平面平面,
平面平面,
在平面內(nèi)過點作直線于點,則平面,
在和中,
因為,所以,
又由題知,
所以,
由已知求得,所以,
連接BD,則,
又求得的面積為,
所以由點B 到平面的距離為.
【題型】解答題
【結(jié)束】
19
【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎勵1元;乙方案:底薪140元,每日前55單沒有獎勵,超過55單的部分每單獎勵12元.
(1)請分別求出甲、乙兩種薪酬方案中日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式;
(2)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)滿足以下條件:在這100天中的派送量指標(biāo)滿足如圖所示的直方圖,其中當(dāng)某天的派送量指標(biāo)在 時,日平均派送量為單.
若將頻率視為概率,回答下列問題:
①根據(jù)以上數(shù)據(jù),設(shè)每名派送員的日薪為(單位:元),試分別求出甲、乙兩種方案的日薪的分布列,數(shù)學(xué)期望及方差;
②結(jié)合①中的數(shù)據(jù),根據(jù)統(tǒng)計學(xué)的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說明你的理由.
(參考數(shù)據(jù): , , , , , , , , )
查看答案和解析>>
科目: 來源: 題型:
【題目】已知是公差不為零的等差數(shù)列,滿足,且、、成等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)設(shè)數(shù)列滿足,求數(shù)列的前項和.
【答案】(1);(2)
【解析】試題分析:(1)設(shè)等差數(shù)列 的公差為,由a3=7,且、、成等比數(shù)列.可得,解之得即可得出數(shù)列的通項公式;
2)由(1)得,則,由裂項相消法可求數(shù)列的前項和.
試題解析:(1)設(shè)數(shù)列的公差為,且由題意得,
即 ,解得,
所以數(shù)列的通項公式.
(2)由(1)得
,
.
【題型】解答題
【結(jié)束】
18
【題目】四棱錐的底面為直角梯形,,,,為正三角形.
(1)點為棱上一點,若平面,,求實數(shù)的值;
(2)求點B到平面SAD的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),,若函數(shù)有三個不同的零點,,(其中),則的取值范圍為__________.
【答案】
【解析】如圖:
,,作出函數(shù)圖象如圖所示
,,作出函數(shù)圖象如圖所示
,由有三個不同的零點
,如圖
令
得
為滿足有三個零點,如圖可得
,
點睛:本題考查了函數(shù)零點問題,先由導(dǎo)數(shù)求出兩個函數(shù)的單調(diào)性,繼而畫出函數(shù)圖像,再由函數(shù)的零點個數(shù)確定參量取值范圍,將問題轉(zhuǎn)化為函數(shù)的兩根問題來求解,本題需要化歸轉(zhuǎn)化,函數(shù)的思想,零點問題等較為綜合,有很大難度。
【題型】填空題
【結(jié)束】
17
【題目】已知等比數(shù)列的前項和為,且滿足.
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足,求數(shù)列的前項和.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1,設(shè)AB1的中點為D,B1C∩BC1=E.
求證:(1)DE∥平面AA1C1C;
(2)BC1⊥AB1.
查看答案和解析>>
科目: 來源: 題型:
【題目】在極坐標(biāo)系中,曲線,曲線,點,以極點為原點,極軸為軸正半軸建立直角坐標(biāo)系.
(1)求曲線和的直角坐標(biāo)方程;
(2)過點的直線交于點,交于點,若,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com