相關(guān)習(xí)題
 0  264390  264398  264404  264408  264414  264416  264420  264426  264428  264434  264440  264444  264446  264450  264456  264458  264464  264468  264470  264474  264476  264480  264482  264484  264485  264486  264488  264489  264490  264492  264494  264498  264500  264504  264506  264510  264516  264518  264524  264528  264530  264534  264540  264546  264548  264554  264558  264560  264566  264570  264576  264584  266669 

科目: 來源: 題型:

【題目】設(shè)為拋物線的焦點,過點的直線與拋物線相交于、兩點.

1)若,求此時直線的方程;

2)若與直線垂直的直線過點,且與拋物線相交于點、,設(shè)線段、的中點分別為、,如圖,求證:直線過定點;

3)設(shè)拋物線上的點、在其準線上的射影分別為,若的面積是的面積的兩倍,如圖,求線段中點的軌跡方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知某校一間辦公室有四位老師甲、乙、丙、。谀程斓哪硞時段,他們每人各做一項工作,一人在查資料,一人在寫教案,一人在批改作業(yè),另一人在打印材料.

若下面4個說法都是正確的:

甲不在查資料,也不在寫教案; 乙不在打印材料,也不在查資料;

丙不在批改作業(yè),也不在打印材料; 丁不在寫教案,也不在查資料.

此外還可確定:如果甲不在打印材料,那么丙不在查資料.根據(jù)以上信息可以判斷

A.甲在打印材料

B.乙在批改作業(yè)

C.丙在寫教案

D.丁在打印材料

查看答案和解析>>

科目: 來源: 題型:

【題目】某足球俱樂部對“一線隊引援”和“青訓(xùn)”投入分別規(guī)劃如下:2018年,該俱樂部在“一線隊引援”投入資金為16000萬元,“青訓(xùn)”投入資金為1000萬元.計劃每年“一線隊引援”投入比上一年減少一半,“青訓(xùn)”投入比上一年增加一倍.

1)請問哪一年該俱樂部“一線隊引援”和“青訓(xùn)”投入總和最少?

2)從2018年起包括2018該俱樂部從哪一年開始“一線隊引援”和“青訓(xùn)”總投入之和不低于62000萬元?(總投入是指各年投入之和)

查看答案和解析>>

科目: 來源: 題型:

【題目】正方形ABCD的邊長為2,對角線AC、BD相交于點O,動點P滿足,若,其中m、nR,則的最大值是________

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓C過原點且與相切,且圓心C在直線上.

(1)求圓的方程;(2)過點的直線l與圓C相交于A,B兩點, , 求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知F為拋物線y2x的焦點,點A,B在該拋物線上且位于x軸的兩側(cè),(其中O為坐標原點),則△ABO與△AFO面積之和的最小值是________.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓過點,且離心率.

1)求橢圓的方程;

2)直線的斜率為,直線與橢圓交于、兩點,求的面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】對于正三角形,挖去以三邊中點為頂點的小正三角形,得到一個新的圖形,這樣的過程稱為一次鏤空操作,設(shè)是一個邊長為1的正三角形,第一次鏤空操作后得到圖1,對剩下的3個小正三角形各進行一次鏤空操作后得到圖2,對剩下的小三角形重復(fù)進行上述操作,設(shè)是第次挖去的小三角形面積之和(如是第1次挖去的中間小三角形面積,是第2次挖去的三個小三角形面積之和),是前次挖去的所有三角形的面積之和,則

A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】橢圓)的離心率是,點在短軸上,且。

(1)球橢圓的方程;

(2)設(shè)為坐標原點,過點的動直線與橢圓交于兩點。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請說明理由

查看答案和解析>>

科目: 來源: 題型:

【題目】已知動圓過定點A(4,0), 且在y軸上截得的弦MN的長為8.

(Ⅰ) 求動圓圓心的軌跡C的方程;

(Ⅱ) 已知點B(1,0), 設(shè)不垂直于x軸的直線l與軌跡C交于不同的兩點P, Q, x軸是的角平分線, 證明直線l過定點.

查看答案和解析>>

同步練習(xí)冊答案