題目列表(包括答案和解析)

 0  445280  445288  445294  445298  445304  445306  445310  445316  445318  445324  445330  445334  445336  445340  445346  445348  445354  445358  445360  445364  445366  445370  445372  445374  445375  445376  445378  445379  445380  445382  445384  445388  445390  445394  445396  445400  445406  445408  445414  445418  445420  445424  445430  445436  445438  445444  445448  445450  445456  445460  445466  445474  447348 

1.已知直線垂直,垂足為,則的值為(   )

(A) 20                   (B) 24

(C) 0                   (D) -4

試題詳情

5.解三角形問題可能出現(xiàn)一解、兩解或無解的情況,這時(shí)應(yīng)結(jié)合“三角形中大邊對(duì)大角定理及幾何作圖來幫助理解”。

試題詳情

4.兩內(nèi)角與其正弦值:在△ABC 中,,…

試題詳情

3.三角學(xué)中的射影定理:在△ABC 中,,…

試題詳情

2.三角形內(nèi)切圓的半徑:,特別地,;

試題詳情

1.解斜三角形的常規(guī)思維方法是:

(1)已知兩角和一邊(如A、B、C),由A+B+C = πC,由正弦定理求a、b

(2)已知兩邊和夾角(如a、b、c),應(yīng)用余弦定理求c邊;再應(yīng)用正弦定理先求較短邊所對(duì)的角,然后利用A+B+C = π,求另一角;

(3)已知兩邊和其中一邊的對(duì)角(如a、bA),應(yīng)用正弦定理求B,由A+B+C = πC,再由正弦定理或余弦定理求c邊,要注意解可能有多種情況;

(4)已知三邊a、b、c,應(yīng)余弦定理求A、B,再由A+B+C = π,求角C。

試題詳情

題型1:正、余弦定理

(2009岳陽一中第四次月考).已知△中,,,,,則                                                                (   )

A..    B .     C.       D.

答案  C

例1.(1)在中,已知,,cm,解三角形;

(2)在中,已知cm,cm,,解三角形(角度精確到,邊長(zhǎng)精確到1cm)。

解析:(1)根據(jù)三角形內(nèi)角和定理,

;

根據(jù)正弦定理,

根據(jù)正弦定理,

(2)根據(jù)正弦定理,

   

因?yàn)?sub>,所以,或

①當(dāng)時(shí),  ,

②當(dāng)時(shí),

  ,

點(diǎn)評(píng):應(yīng)用正弦定理時(shí)(1)應(yīng)注意已知兩邊和其中一邊的對(duì)角解三角形時(shí),可能有兩解的情形;(2)對(duì)于解三角形中的復(fù)雜運(yùn)算可使用計(jì)算器

例2.(1)在ABC中,已知,,求b及A;

(2)在ABC中,已知,,解三角形

解析:(1)∵

=cos

=

=

可以利用余弦定理,也可以利用正弦定理:

解法一:∵cos

解法二:∵sin

又∵,即

(2)由余弦定理的推論得:

cos

;

cos  

;

點(diǎn)評(píng):應(yīng)用余弦定理時(shí)解法二應(yīng)注意確定A的取值范圍。

題型2:三角形面積

例3.在中,,,,求的值和的面積。

解法一:先解三角方程,求出角A的值。

  

,

,

  

   。

   解法二:由計(jì)算它的對(duì)偶關(guān)系式的值。

        ①

  

   ,

        、

     ① + ② 得 。

     ①。、凇〉谩。

從而 。

以下解法略去。

點(diǎn)評(píng):本小題主要考查三角恒等變形、三角形面積公式等基本知識(shí),著重?cái)?shù)學(xué)考查運(yùn)算能力,是一道三角的基礎(chǔ)試題。兩種解法比較起來,你認(rèn)為哪一種解法比較簡(jiǎn)單呢?

例4.(2009湖南卷文)在銳角中,的值等于     ,

的取值范圍為     .       

答案  2 

解析  設(shè)由正弦定理得

由銳角,

,故,

例5.(2009浙江理)(本題滿分14分)在中,角所對(duì)的邊分別為,且滿足,. 

(I)求的面積;  (II)若,求的值.

解  (1)因?yàn)?sub>,,又由

,    

(2)對(duì)于,又,,由余弦定理得

,    

例6.(2009全國卷Ⅰ理)在中,內(nèi)角A、B、C的對(duì)邊長(zhǎng)分別為、,已知,且 求b      

分析::此題事實(shí)上比較簡(jiǎn)單,但考生反應(yīng)不知從何入手.對(duì)已知條件(1)左側(cè)是二次的右側(cè)是一次的,學(xué)生總感覺用余弦定理不好處理,而對(duì)已知條件(2) 過多的關(guān)注兩角和與差的正弦公式,甚至有的學(xué)生還想用現(xiàn)在已經(jīng)不再考的積化和差,導(dǎo)致找不到突破口而失分.

解法一:在則由正弦定理及余弦定理有:化簡(jiǎn)并整理得:.又由已知.解得.      

解法二:由余弦定理得: .又,.

所以                                                   ①

,即

由正弦定理得,故                  ②

由①,②解得.

評(píng)析:從08年高考考綱中就明確提出要加強(qiáng)對(duì)正余弦定理的考查.在備考中應(yīng)注意總結(jié)、提高自己對(duì)問題的分析和解決能力及對(duì)知識(shí)的靈活運(yùn)用能力.另外提醒:兩綱中明確不再考的知識(shí)和方法了解就行,不必強(qiáng)化訓(xùn)練

題型4:三角形中求值問題

例7.的三個(gè)內(nèi)角為,求當(dāng)A為何值時(shí),取得最大值,并求出這個(gè)最大值。

解析:由A+B+C=π,得=-,所以有cos =sin。

cosA+2cos =cosA+2sin =1-2sin2 + 2sin=-2(sin - )2+ ;

當(dāng)sin = ,即A=時(shí), cosA+2cos取得最大值為。

點(diǎn)評(píng):運(yùn)用三角恒等式簡(jiǎn)化三角因式最終轉(zhuǎn)化為關(guān)于一個(gè)角的三角函數(shù)的形式,通過三角函數(shù)的性質(zhì)求得結(jié)果。

例8.(2009浙江文)(本題滿分14分)在中,角所對(duì)的邊分別為,且滿足,. 

(I)求的面積;  (II)若,求的值.

解(Ⅰ)    

,而,所以,所以的面積為:

(Ⅱ)由(Ⅰ)知,而,所以

所以

點(diǎn)評(píng):本小題主要考察三角函數(shù)概念、同角三角函數(shù)的關(guān)系、兩角和與差的三角函數(shù)的公式以及倍角公式,考察應(yīng)用、分析和計(jì)算能力

題型5:三角形中的三角恒等變換問題

例9.在△ABC中,ab、c分別是∠A、∠B、∠C的對(duì)邊長(zhǎng),已知a、bc成等比數(shù)列,且a2c2=acbc,求∠A的大小及的值。

分析:因給出的是a、bc之間的等量關(guān)系,要求∠A,需找∠A與三邊的關(guān)系,故可用余弦定理。由b2=ac可變形為=a,再用正弦定理可求的值。

解法一:∵a、bc成等比數(shù)列,∴b2=ac。

a2c2=acbc,∴b2+c2a2=bc。

在△ABC中,由余弦定理得:cosA===,∴∠A=60°。

在△ABC中,由正弦定理得sinB=,∵b2=ac,∠A=60°,

=sin60°=。

解法二:在△ABC中,

由面積公式得bcsinA=acsinB。

b2=ac,∠A=60°,∴bcsinA=b2sinB。

=sinA=。

評(píng)述:解三角形時(shí),找三邊一角之間的關(guān)系常用余弦定理,找兩邊兩角之間的關(guān)系常用正弦定理。

例10.在△ABC中,已知AB、C成等差數(shù)列,求的值。

解析:因?yàn)?i>A、B、C成等差數(shù)列,又A+B+C=180°,所以A+C=120°,

從而=60°,故tan.由兩角和的正切公式,

所以

。

點(diǎn)評(píng):在三角函數(shù)求值問題中的解題思路,一般是運(yùn)用基本公式,將未知角變換為已知角求解,同時(shí)結(jié)合三角變換公式的逆用。

題型6:正、余弦定理判斷三角形形狀

例11.在△ABC中,若2cosBsinA=sinC,則△ABC的形狀一定是(   )

A.等腰直角三角形                        B.直角三角形

C.等腰三角形                             D.等邊三角形

答案:C

解析:2sinAcosB=sin(A+B)+sin(AB)又∵2sinAcosB=sinC,

∴sin(AB)=0,∴AB

點(diǎn)評(píng):本題考查了三角形的基本性質(zhì),要求通過觀察、分析、判斷明確解題思路和變形方向,通暢解題途徑

例12.(2009四川卷文)在中,為銳角,角所對(duì)的邊分別為,且

(I)求的值;

(II)若,求的值。   

解(I)∵為銳角,

    

(II)由(I)知,∴

,即

又∵     

∴    ∴ 

∴     

題型7:正余弦定理的實(shí)際應(yīng)用

例13.(2009遼寧卷理)如圖,A,B,C,D都在同一個(gè)與水平面垂直的平面內(nèi),B,D為兩島上的兩座燈塔的塔頂。測(cè)量船于水面A處測(cè)得B點(diǎn)和D點(diǎn)的仰角分別為,,于水面C處測(cè)得B點(diǎn)和D點(diǎn)的仰角均為,AC=0.1km。試探究圖中B,D間距離與另外哪兩點(diǎn)間距離相等,然后求B,D的距離(計(jì)算結(jié)果精確到0.01km,1.414,2.449)     

解:在△ABC中,∠DAC=30°, ∠ADC=60°-∠DAC=30,

所以CD=AC=0.1 又∠BCD=180°-60°-60°=60°,

故CB是△CAD底邊AD的中垂線,所以BD=BA,      

在△ABC中,

即AB=

因此,BD=

故B,D的距離約為0.33km!       。

點(diǎn)評(píng):解三角形等內(nèi)容提到高中來學(xué)習(xí),又近年加強(qiáng)數(shù)形結(jié)合思想的考查和對(duì)三角變換要求的降低,對(duì)三角的綜合考查將向三角形中問題伸展,但也不可太難,只要掌握基本知識(shí)、概念,深刻理解其中基本的數(shù)量關(guān)系即可過關(guān)。

(2)((2009寧夏海南卷理)(本小題滿分12分)為了測(cè)量?jī)缮巾擬,N間的距離,飛機(jī)沿水平方向在A,B兩點(diǎn)進(jìn)行測(cè)量,A,B,M,N在同一個(gè)鉛垂平面內(nèi)(如示意圖),飛機(jī)能夠測(cè)量的數(shù)據(jù)有俯角和A,B間的距離,請(qǐng)?jiān)O(shè)計(jì)一個(gè)方案,包括:①指出需要測(cè)量的數(shù)據(jù)(用字母表示,并在圖中標(biāo)出);②用文字和公式寫出計(jì)算M,N間的距離的步驟

解:方案一:①需要測(cè)量的數(shù)據(jù)有:A 點(diǎn)到M,N點(diǎn)的俯角;B點(diǎn)到M,

N的俯角;A,B的距離 d (如圖所示) .       

②第一步:計(jì)算AM . 由正弦定理;

第二步:計(jì)算AN . 由正弦定理;

第三步:計(jì)算MN. 由余弦定理 .

方案二:①需要測(cè)量的數(shù)據(jù)有:

A點(diǎn)到M,N點(diǎn)的俯角,;B點(diǎn)到M,N點(diǎn)的府角,;A,B的距離 d (如圖所示).

 ②第一步:計(jì)算BM . 由正弦定理;

第二步:計(jì)算BN . 由正弦定理。弧   

第三步:計(jì)算MN . 由余弦定理

21.(2009四川卷文)在中,為銳角,角所對(duì)的邊分別為,且

(I)求的值;

(II)若,求的值!  

解(I)∵為銳角,

    

(II)由(I)知,∴

,即

又∵     

∴    ∴ 

∴     

點(diǎn)評(píng):三角函數(shù)有著廣泛的應(yīng)用,本題就是一個(gè)典型的范例。通過引入角度,將圖形的語言轉(zhuǎn)化為三角的符號(hào)語言,再通過局部的換元,又將問題轉(zhuǎn)化為我們熟知的函數(shù),這些解題思維的拐點(diǎn),你能否很快的想到呢?

試題詳情

5.三角形中的三角變換

三角形中的三角變換,除了應(yīng)用上述公式和上述變換方法外,還要注意三角形自身的特點(diǎn)。

(1)角的變換

因?yàn)樵凇鰽BC中,A+B+C=π,所以sin(A+B)=sinC;cos(A+B)=-cosC;tan(A+B)=-tanC。;

(2)三角形邊、角關(guān)系定理及面積公式,正弦定理,余弦定理。

r為三角形內(nèi)切圓半徑,p為周長(zhǎng)之半。

(3)在△ABC中,熟記并會(huì)證明:∠A,∠B,∠C成等差數(shù)列的充分必要條件是∠B=60°;△ABC是正三角形的充分必要條件是∠A,∠B,∠C成等差數(shù)列且a,b,c成等比數(shù)列。

試題詳情

4.解三角形:由三角形的六個(gè)元素(即三條邊和三個(gè)內(nèi)角)中的三個(gè)元素(其中至少有一個(gè)是邊)求其他未知元素的問題叫做解三角形.廣義地,這里所說的元素還可以包括三角形的高、中線、角平分線以及內(nèi)切圓半徑、外接圓半徑、面積等等.解三角形的問題一般可分為下面兩種情形:若給出的三角形是直角三角形,則稱為解直角三角形;若給出的三角形是斜三角形,則稱為解斜三角形

解斜三角形的主要依據(jù)是:

設(shè)△ABC的三邊為a、bc,對(duì)應(yīng)的三個(gè)角為AB、C。

(1)角與角關(guān)系:A+B+C = π

(2)邊與邊關(guān)系:a + b > c,b + c > ac + a > b,ab < cbc < a,ca > b;

(3)邊與角關(guān)系:

正弦定理  (R為外接圓半徑);

余弦定理  c2 = a2+b2-2bccosC,b2 = a2+c2-2accosBa2 = b2+c2-2bccosA;

它們的變形形式有:a = 2R sinA,。

試題詳情

3.三角形的面積公式:

(1)△=ahabhbchc(hahb、hc分別表示ab、c上的高);

(2)△=absinCbcsinAacsinB;

(3)△=;

(4)△=2R2sinAsinBsinC。(R為外接圓半徑)

(5)△=;

(6)△=;

(7)△=r·s。

試題詳情


同步練習(xí)冊(cè)答案