21.(本小題滿分12分)
已知函數(shù),其中
(1) 當滿足什么條件時,取得極值?
(2) 已知,且在區(qū)間上單調(diào)遞增,試用表示出的取值范圍.
解: (1)由已知得,令,得,
要取得極值,方程必須有解,
所以△,即, 此時方程的根為
,,
所以
當時,
x |
(-∞,x1) |
x 1 |
(x1,x2) |
x2 |
(x2,+∞) |
f’(x) |
+ |
0 |
- |
0 |
+ |
f (x) |
增函數(shù) |
極大值 |
減函數(shù) |
極小值 |
增函數(shù) |
所以在x 1, x2處分別取得極大值和極小值.
當時,
x |
(-∞,x2) |
x 2 |
(x2,x1) |
x1 |
(x1,+∞) |
f’(x) |
- |
0 |
+ |
0 |
- |
f (x) |
減函數(shù) |
極小值 |
增函數(shù) |
極大值 |
減函數(shù) |
所以在x 1, x2處分別取得極大值和極小值.
綜上,當滿足時, 取得極值.
(2)要使在區(qū)間上單調(diào)遞增,需使在上恒成立.
即恒成立, 所以
設,,
令得或(舍去),
當時,,當時,單調(diào)增函數(shù);
當時,單調(diào)減函數(shù),
所以當時,取得最大,最大值為.
所以
當時,,此時在區(qū)間恒成立,所以在區(qū)間上單調(diào)遞增,當時最大,最大值為,所以
綜上,當時, ; 當時,
[命題立意]:本題為三次函數(shù),利用求導的方法研究函數(shù)的極值、單調(diào)性和函數(shù)的最值,函數(shù)在區(qū)間上為單調(diào)函數(shù),則導函數(shù)在該區(qū)間上的符號確定,從而轉(zhuǎn)為不等式恒成立,再轉(zhuǎn)為函數(shù)研究最值.運用函數(shù)與方程的思想,化歸思想和分類討論的思想解答問題.
20.(本小題滿分12分)
等比數(shù)列{}的前n項和為, 已知對任意的 ,點,均在函數(shù)且均為常數(shù))的圖像上.
(1)求r的值;
(11)當b=2時,記 求數(shù)列的前項和
解:因為對任意的,點,均在函數(shù)且均為常數(shù))的圖像上.所以得,
當時,,
當時,,
又因為{}為等比數(shù)列, 所以, 公比為, 所以
(2)當b=2時,,
則
相減,得
所以
[命題立意]:本題主要考查了等比數(shù)列的定義,通項公式,以及已知求的基本題型,并運用錯位相減法求出一等比數(shù)列與一等差數(shù)列對應項乘積所得新數(shù)列的前項和.
19. (本小題滿分12分)
一汽車廠生產(chǎn)A,B,C三類轎車,每類轎車均有舒適型和標準型兩種型號,某月的產(chǎn)量如下表(單位:輛):
|
轎車A |
轎車B |
轎車C |
舒適型 |
100 |
150 |
z |
標準型 |
300 |
450 |
600 |
按類型分層抽樣的方法在這個月生產(chǎn)的轎車中抽取50輛,其中有A類轎車10輛.
(1) 求z的值.
(2) 用分層抽樣的方法在C類轎車中抽取一個容量為5的樣本.將該樣本看成一個總體,從中任取2輛,求至少有1輛舒適型轎車的概率;
(3) 用隨機抽樣的方法從B類舒適型轎車中抽取8輛,經(jīng)檢測它們的得分如下:9.4, 8.6, 9.2, 9.6, 8.7, 9.3, 9.0, 8.2.把這8輛轎車的得分看作一個總體,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對值不超過0.5的概率.
解: (1).設該廠本月生產(chǎn)轎車為n輛,由題意得,,所以n=2000. z=2000-100-300-150-450-600=400
(2) 設所抽樣本中有m輛舒適型轎車,因為用分層抽樣的方法在C類轎車中抽取一個容量為5的樣本,所以,解得m=2也就是抽取了2輛舒適型轎車,3輛標準型轎車,分別記作S1,S2;B1,B2,B3,則從中任取2輛的所有基本事件為(S1, B1), (S1, B2) , (S1, B3) (S2 ,B1), (S2 ,B2), (S2 ,B3),( (S1, S2),(B1 ,B2), (B2 ,B3) ,(B1 ,B3)共10個,其中至少有1輛舒適型轎車的基本事件有7個基本事件: (S1, B1), (S1, B2) , (S1, B3) (S2 ,B1), (S2 ,B2), (S2 ,B3),( (S1, S2),所以從中任取2輛,至少有1輛舒適型轎車的概率為.
(3)樣本的平均數(shù)為,
那么與樣本平均數(shù)之差的絕對值不超過0.5的數(shù)為9.4, 8.6, 9.2, 8.7, 9.3, 9.0這6個數(shù),總的個數(shù)為8,所以該數(shù)與樣本平均數(shù)之差的絕對值不超過0.5的概率為.
[命題立意]:本題為概率與統(tǒng)計的知識內(nèi)容,涉及到分層抽樣以及古典概型求事件的概率問題.要讀懂題意,分清類型,列出基本事件,查清個數(shù).,利用公式解答.
18.(本小題滿分12分)
如圖,在直四棱柱ABCD-ABCD中,底面ABCD為等腰梯形,AB//CD,AB=4, BC=CD=2, AA=2, E、E分別是棱AD、AA的中點.
(1) 設F是棱AB的中點,證明:直線EE//平面FCC;
(2) 證明:平面D1AC⊥平面BB1C1C.
證明:(1)在直四棱柱ABCD-ABCD中,取A1B1的中點F1,
連接A1D,C1F1,CF1,因為AB=4, CD=2,且AB//CD,
所以CDA1F1,A1F1CD為平行四邊形,所以CF1//A1D,
又因為E、E分別是棱AD、AA的中點,所以EE1//A1D,
所以CF1//EE1,又因為平面FCC,平面FCC,
所以直線EE//平面FCC.
(2)連接AC,在直棱柱中,CC1⊥平面ABCD,AC平面ABCD,
所以CC1⊥AC,因為底面ABCD為等腰梯形,AB=4, BC=2,
F是棱AB的中點,所以CF=CB=BF,△BCF為正三角形,
,△ACF為等腰三角形,且
所以AC⊥BC, 又因為BC與CC1都在平面BB1C1C內(nèi)且交于點C,
所以AC⊥平面BB1C1C,而平面D1AC,
所以平面D1AC⊥平面BB1C1C.
[命題立意]: 本題主要考查直棱柱的概念、線面平行和線面垂直位置關(guān)系的判定.熟練掌握平行和垂直的判定定理.完成線線、線面位置關(guān)系的轉(zhuǎn)化.
17.(本小題滿分12分)設函數(shù)f(x)=2在處取最小值.
(1) 求.的值;
(2) 在ABC中,分別是角A,B,C的對邊,已知,求角C..
解: (1)
因為函數(shù)f(x)在處取最小值,所以,由誘導公式知,因為,所以.所以
(2)因為,所以,因為角A為ABC的內(nèi)角,所以.又因為所以由正弦定理,得,也就是,
因為,所以或.
當時,;當時,.
[命題立意]:本題主要考查了三角函數(shù)中兩角和差的弦函數(shù)公式、二倍角公式和三角函數(shù)的性質(zhì),并利用正弦定理解得三角形中的邊角.注意本題中的兩種情況都符合.
16.某公司租賃甲、乙兩種設備生產(chǎn)A,B兩類產(chǎn)品,甲種設備每天能生產(chǎn)A類產(chǎn)品5件和B類產(chǎn)品10件,乙種設備每天能生產(chǎn)A類產(chǎn)品6件和B類產(chǎn)品20件.已知設備甲每天的租賃費為200元,設備乙每天的租賃費為300元,現(xiàn)該公司至少要生產(chǎn)A類產(chǎn)品50件,B類產(chǎn)品140件,所需租賃費最少為__________元.
[解析]:設甲種設備需要生產(chǎn)天, 乙種設備需要生產(chǎn)天, 該公司所需租賃費為元,則,甲、乙兩種設備生產(chǎn)A,B兩類產(chǎn)品的情況為下表所示:
產(chǎn)品 設備 |
A類產(chǎn)品 (件)(≥50) |
B類產(chǎn)品 (件)(≥140) |
租賃費 (元) |
甲設備 |
5 |
10 |
200 |
乙設備 |
6 |
20 |
300 |
則滿足的關(guān)系為即:,
作出不等式表示的平面區(qū)域,當對應的直線過兩直線的交點(4,5)時,目標函數(shù)取得最低為2300元.
答案:2300
[命題立意]:本題是線性規(guī)劃的實際應用問題,需要通過審題理解題意,找出各量之間的關(guān)系,最好是列成表格,找出線性約束條件,寫出所研究的目標函數(shù),通過數(shù)形結(jié)合解答問題..
15.執(zhí)行右邊的程序框圖,輸出的T= .
[解析]:按照程序框圖依次執(zhí)行為S=5,n=2,T=2;
S=10,n=4,T=2+4=6;S=15,n=6,T=6+6=12;
S=20,n=8,T=12+8=20;S=25,n=10,T=20+10=30>S,輸出T=30
答案:30
[命題立意]:本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖,一般都可以
反復的進行運算直到滿足條件結(jié)束,本題中涉及到三個變量,
注意每個變量的運行結(jié)果和執(zhí)行情況.
14.若函數(shù)f(x)=a-x-a(a>0且a1)有兩個零點,則實數(shù)a的取值范圍是 .
[解析]: 設函數(shù)且和函數(shù),則函數(shù)f(x)=a-x-a(a>0且a1)有兩個零點, 就是函數(shù)且與函數(shù)有兩個交點,由圖象可知當時兩函數(shù)只有一個交點,不符合,當時,因為函數(shù)的圖象過點(0,1),而直線所過的點(0,a)一定在點(0,1)的上方,所以一定有兩個交點.所以實數(shù)a的取值范圍是.
答案:
[命題立意]:本題考查了指數(shù)函數(shù)的圖象與直線的位置關(guān)系,隱含著對指數(shù)函數(shù)的性質(zhì)的考查,根據(jù)其底數(shù)的不同取值范圍而分別畫出函數(shù)的圖象進行解答.
13.在等差數(shù)列中,,則.
[解析]:設等差數(shù)列的公差為,則由已知得解得,所以.
答案:13.
[命題立意]:本題考查等差數(shù)列的通項公式以及基本計算.
12. 已知定義在R上的奇函數(shù),滿足,且在區(qū)間[0,2]上是增函數(shù),則( ).
A. B.
C. D.
[解析]:因為滿足,所以,所以函數(shù)是以8為周期的周期函數(shù), 則,,,又因為在R上是奇函數(shù), ,得,,而由得,又因為在區(qū)間[0,2]上是增函數(shù),所以,所以,即,故選D.
答案:D.
[命題立意]:本題綜合考查了函數(shù)的奇偶性、單調(diào)性、周期性等性質(zhì),運用化歸的數(shù)學思想和數(shù)形結(jié)合的思想解答問題.
第卷
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com