0  437447  437455  437461  437465  437471  437473  437477  437483  437485  437491  437497  437501  437503  437507  437513  437515  437521  437525  437527  437531  437533  437537  437539  437541  437542  437543  437545  437546  437547  437549  437551  437555  437557  437561  437563  437567  437573  437575  437581  437585  437587  437591  437597  437603  437605  437611  437615  437617  437623  437627  437633  437641  447090 

8. (人教A版116復(fù)習(xí)參考題B組第7題)

要制造一個(gè)無蓋的盒子,形狀為長方體,底寬為2m,F(xiàn)有制盒材料60m2,當(dāng)盒子的長、高各為多少時(shí),盒子的體積最大?

變式1:今有一臺壞天平,兩臂長不等,其余均精確,有人說要用它稱物體的重量,只需將物體放在左右托盤各稱一次,則兩次稱量結(jié)果的和的一半就是物體的真實(shí)重量,這種說法對嗎?并說明你的結(jié)論

解:不對

設(shè)左、右臂長分別是 ,物體放在左、右托盤稱得重量分別為真實(shí)重量為為G,則由杠桿平衡原理有:

   ,    

、佟立诘肎2=, ∴G=

由于,故 ,由平均值不等式 > 知說法不對

設(shè)計(jì)意圖:基本不等式的應(yīng)用。

試題詳情

7. (人教A版115復(fù)習(xí)參考題B組第1題)

求證:

變式1:己知都是正數(shù),且成等比數(shù)列,

求證:

證明:

  成等比數(shù)列,

都是正數(shù),

  

設(shè)計(jì)意圖:基本不等式的靈活應(yīng)用。

變式2:若,求證ab不能都大于

證明:假設(shè)ab, (1-a) (1-b)都大于

設(shè)計(jì)意圖:基本不等式與累乘、反證法綜合應(yīng)用。

試題詳情

6.(人教A版115復(fù)習(xí)參考題A組第2題)

已知集合,,求.

變式1:已知A={x|x3+3x2+2x>0},B={x|x2+ax+b≤0}且AB={x|0<x≤2},AB={xx>-2},求a、b的值

解:A={x|-2<x<-1或x>0},

設(shè)B=[x1,x2],由AB=(0,2]知x2=2,

且-1≤x1≤0,                        ①

AB=(-2,+∞)知-2≤x1≤-1      ②

由①②知x1=-1,x2=2,

a=-(x1+x2)=-1,bx1x2=-2

設(shè)計(jì)意圖:一元二次不等式與集合的運(yùn)算綜合。

變式2:解關(guān)于x的不等式

解:下面對參數(shù)m進(jìn)行分類討論:

①當(dāng)m=時(shí),原不等式為x+1>0,∴不等式的解為

②當(dāng)時(shí),原不等式可化為

,∴不等式的解為

③當(dāng)時(shí),原不等式可化為

,

  當(dāng)時(shí),原不等式的解集為;

  當(dāng)時(shí),原不等式的解集為;

  當(dāng)時(shí),原不等式無解

綜上述,原不等式的解集情況為:

①當(dāng)時(shí),解為

②當(dāng)時(shí),無解;

③當(dāng)時(shí),解為;

④當(dāng)m=時(shí),解為

⑤當(dāng)時(shí),解為

設(shè)計(jì)意圖:含參數(shù)的一元二次不等式的解法。

試題詳情

5.(人教A版113頁習(xí)題3.4A組第1題)

(1)把36寫成兩個(gè)正數(shù)的積,當(dāng)這兩個(gè)正數(shù)取什么值時(shí),它們的和最。

(2)把18寫成兩個(gè)正數(shù)的和,當(dāng)這兩個(gè)正數(shù)取什么值時(shí),它們的積最大?

變式1:函數(shù)y =+的值域?yàn)?u>        

解:y=+= (+1)+-1≥2-1=1 ,所以值域?yàn)閇1, +∞)

設(shè)計(jì)意圖:均值不等式的靈活應(yīng)用.

變式2:設(shè)x≥0, y≥0,  x2+=1,則的最大值為__

解法一: ∵x≥0, y≥0, x2+=1 

==

==

當(dāng)且僅當(dāng)x=,y=(即x2= )時(shí), 取得最大值

解法二:  令(0≤)

  則=cos=

=

當(dāng)=,

=時(shí),x=,y=時(shí),取得最大值

設(shè)計(jì)意圖:均值不等式的靈活應(yīng)用.

試題詳情

4.(人教A版105習(xí)題3.3A組第2題)

畫出不等式組表示的平面區(qū)域.

變式1:點(diǎn)(-2,t)在直線2x-3y+6=0的上方,則t的取值范圍是______

解:(-2,t)在2x-3y+6=0的上方,則2×(-2)-3t+6<0,解得t 答案:t

設(shè)計(jì)意圖:熟悉判斷不等式所代表的區(qū)域的方法.

變式2:求不等式|x-1|+|y-1|≤2表示的平面區(qū)域的面積

解:|x-1|+|y-1|≤2可化為

其平面區(qū)域如圖

∴面積S=×4×4=8

設(shè)計(jì)意圖:不同形式的可行域的作圖.

試題詳情

10. 如果我們不采取有效的方法,就可能控制不了這種趨勢,就會出現(xiàn)一些意想不到的不良后果,所以,我們應(yīng)該做的是……

If we can not take useful means, we may not control this trend, and some undesirable

result may come out unexpectedly, so what we should do is

常用句型:

開頭:

When it comes to ..., some think ...

There is a public debate today that ...

A is a commen way of ..., but is it a wise one?

Recentaly the problem has been brought into focus.

提出觀點(diǎn):

Now there is a growing awareness that...

It is time we explore the truth of ...

Nowhere in history has the issue been more visible.

進(jìn)一步提出觀點(diǎn):

... but that is only part of the history.

Another equally important aspect is ...

A is but one of the many effects. Another is ...

Besides, other reasons are...

提出假想例子的方式:

Suppose that...

Just imagine what would be like if...

It is reasonable to expect...

It is not surprising that...

舉普通例子:

For example(instance),...

... such as A,B,C and so on (so forth)

A good case in point is...

A particular example for this is...

引用:

One of the greatest early writers said ...

"Knowledge is power", such is the remard of ...

"......". That is how sb comment ( criticize/ praise...).

"......". How often we hear such words like there.

講故事

(先說故事主體),this story is not rare.

..., such delimma we often meet in daily life.

..., the story still has a realistic significance.

提出原因:

There are many reasons for ...

Why .... , for one thing,...

The answer to this problem involves many factors.

Any discussion about this problem would inevitably involves ...

The first reason can be obiviously seen.

Most people would agree that...

Some people may neglect that in fact ...

Others suggest that...

Part of the explanation is ...

進(jìn)行對比:

The advantages for A for outweigh the disadvantages of...

Although A enjoys a distinct advantage ...

Indeed , A carries much weight than B when sth is concerned.

A maybe ... , but it suffers from the disadvantage that...

承上啟下:

To understand the truth of ..., it is also important to see...

A study of ... will make this point clear

讓步:

Certainly, B has its own advantages, such as...

I do not deny that A has its own merits.

結(jié)尾:

From what has been discussed above, we may safely draw

the conclusion that ...

In summary, it is wiser ...

In short...

感言:好詞好句固然好,但要用得好、用得妙才能寫出好文章。故以下附:

作文六戒

 一戒:移花接木,如出一轍

 升學(xué)考試的作文最忌諱抄襲,不少渾渾噩噩的學(xué)生為謀取高分,在考前把套題范圍廣的范文一篇篇在大腦中做備份,然而,每年能押中作文考題者卻寥寥無幾,而且即便押中也不一定能得到閱卷教師的好評,得不償失。

 二戒:言不及義,離弦走板

 作文第二大忌諱的便是偏題。這里說的是用以前寫過的文章押題,文章確實(shí)是自己原創(chuàng),但牽強(qiáng)附會地套題使得文章的立意、形式過于陳舊、生硬。大多數(shù)寫作水平不咋樣的人很難讓事先備好的文章不偏不倚套中考試文章的要求

 三戒:唇焦舌敝,呶呶不休

 動筆之前如果不耐心構(gòu)思整個(gè)文章的立意、文體而直接奮筆疾書,寫到一半很容易混淆自己的創(chuàng)作思路,在時(shí)間有限而自己又一籌莫展的情形下很可能寫出紊亂、重復(fù)的語言,即便洋洋灑灑寫了一大堆,依然云山霧罩沒有把想要表達(dá)的立意清晰展示出。

 四戒:迷離叵測,不知所云

 一些文章,看起來字字珠璣、微言大義,實(shí)際上是在故作深奧,即便你寫文章時(shí)并無愚弄閱卷教師之意,而在教師的眼中卻是一堆顯擺自己的空洞大道理。

 五戒:滄桑潦倒,無病呻吟

 考試作文偏好積極向上的文章,也接受抒發(fā)真情實(shí)感的文章。然而就有那么些同學(xué),把自己心中郁積的悶氣全往試卷上發(fā),這種暮氣沉沉、索然無味的文章,閱卷老師心情再好也被字里行間充斥的懊喪攪亂。

 六戒:花里胡哨,言過其實(shí)

 雖然好詞佳句在文章中扮演的角色不容小覷,但它們依然是瑕瑜互見的雙刃劍。如果文章中使用過多的華麗辭藻而故事情節(jié)并不咋的,那樣只會讓人產(chǎn)生華而不實(shí)甚至賣弄詞匯的感覺,閱卷教師只覺得這文章的作者非常適合編寫詞匯手冊。

試題詳情

9. 綜上所述,我們可以清楚地得出結(jié)論……

From what has been discussed above, we may reasonably arrive at the conclusion

that……

試題詳情

8. 在總體上很難說……是好還是壞,因?yàn)樗诤艽蟪潭壬先Q于……的形勢。然而,就我個(gè)人而言,我發(fā)現(xiàn)……。

It is difficult to say whether ……is good or not in general as it depends

very much on the situation of…….however, from a personal point of view

find……

試題詳情

7. 對我來說,我認(rèn)為有必要……。原因如下:第一,……; 第二,……;最后……但同樣重要的是……

In my opinion, I think it necessary to……The reasons are as follows. First

……second …… Last but not least,……

試題詳情


同步練習(xí)冊答案