設數(shù)列{an}滿足a1=1,且對任意的n∈N*,點Pn(n,an)都有
.
PnPn+1
=(1,2)
,則數(shù)列{an}的通項公式為( 。
A.2n-1B.nC.2n+1D.2n-1
相關習題

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}滿足a1=1,且對任意的n∈N*,點Pn(n,an)都有
.
PnPn+1
=(1,2)
,則數(shù)列{an}的通項公式為( 。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設數(shù)列{an}滿足a1=1,且對任意的n∈N*,點Pn(n,an)都有
.
PnPn+1
=(1,2)
,則數(shù)列{an}的通項公式為(  )
A.2n-1B.nC.2n+1D.2n-1

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年浙江省溫州市省一級重點中學(八校聯(lián)考)高一(下)期末數(shù)學試卷(解析版) 題型:選擇題

設數(shù)列{an}滿足a1=1,且對任意的n∈N*,點Pn(n,an)都有,則數(shù)列{an}的通項公式為( )
A.2n-1
B.n
C.2n+1
D.2n-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

設數(shù)列{an}滿足a1=1,且對任意的n∈N*,點Pn(n,an)都有數(shù)學公式,則數(shù)列{an}的通項公式為


  1. A.
    2n-1
  2. B.
    n
  3. C.
    2n+1
  4. D.
    2n-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}滿足a1=1,a2=2,an=
13
(an-1+2an-2)(n=3,4,…).數(shù)列{bn}滿足b1=1,bn(n=2,3,…)是非零整數(shù),且對任意的正整數(shù)m和自然數(shù)k,都有-1≤bm+bm+1+…+bm+k≤1.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)記cn=nanbn(n=1,2,…),求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}滿足a1=1,a2+a4=6,且對任意n∈N*,函數(shù)f(x)=(an-an+1+an+2)x+an+1?cosx-an+2sinx滿足f′(
π
2
)=0
cn=an+
1
2an
,則數(shù)列{cn}的前n項和Sn為( 。
A、
n2+n
2
-
1
2n
B、
n2+n+4
2
-
1
2n-1
C、
n2+n+2
2
-
1
2n
D、
n2+n+4
2
-
1
2n

查看答案和解析>>

科目:高中數(shù)學 來源:廣東 題型:解答題

設數(shù)列{an}滿足a1=1,a2=2,an=
1
3
(an-1+2an-2)(n=3,4,…).數(shù)列{bn}滿足b1=1,bn(n=2,3,…)是非零整數(shù),且對任意的正整數(shù)m和自然數(shù)k,都有-1≤bm+bm+1+…+bm+k≤1.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)記cn=nanbn(n=1,2,…),求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源:廣東省高考真題 題型:解答題

設數(shù)列{an}滿足a1=1,a2=2,an=(an-1+2an-2)(n=3,4,…)。數(shù)列{bn}滿足b1=1,bn(n=2,3,…)是非零整數(shù),且對任意的正整數(shù)m和自然數(shù)k,都有-1≤bm+bm+1+…+bm+k≤1,
(1)求數(shù)列{an}和{bn}的通項公式;
(2)記cn=nanbn(n=1,2,…),求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源:2008年廣東省高考數(shù)學試卷(文科)(解析版) 題型:解答題

設數(shù)列{an}滿足a1=1,a2=2,an=(an-1+2an-2)(n=3,4,…).數(shù)列{bn}滿足b1=1,bn(n=2,3,…)是非零整數(shù),且對任意的正整數(shù)m和自然數(shù)k,都有-1≤bm+bm+1+…+bm+k≤1.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)記cn=nanbn(n=1,2,…),求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源:廣東省高考數(shù)學一輪復習:6.7 數(shù)列的求和(解析版) 題型:解答題

設數(shù)列{an}滿足a1=1,a2=2,an=(an-1+2an-2)(n=3,4,…).數(shù)列{bn}滿足b1=1,bn(n=2,3,…)是非零整數(shù),且對任意的正整數(shù)m和自然數(shù)k,都有-1≤bm+bm+1+…+bm+k≤1.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)記cn=nanbn(n=1,2,…),求數(shù)列{cn}的前n項和Sn

查看答案和解析>>


同步練習冊答案