【題目】如圖,在正方形OABC中,點B的坐標是(4,4),點EF分別在邊BC、BA上,OE2.若∠EOF45°,則F點的縱坐標是(  )

A.1B.C.D.1

【答案】B

【解析】

如圖連接EF,延長BA使得AM=CE,則OCE≌△OAM.先證明OFE≌△FOM,推出EF=FM=AF+AM=AF+CE,設AF=x,在RtEFB中利用勾股定理列出方程即可解決問題.

如圖連接EF,延長BA使得AMCE,則OCE≌△OAM

OEOM,∠COE=∠MOA,

∵∠EOF45°,

∴∠COE+AOF45°

∴∠MOA+AOF45°,

∴∠EOF=∠MOF,

OFEOFM中,

,

∴△OFE≌△FOM,

EFFMAF+AMAF+CE,設AFx,

CE,

EF2+xEB2,FB4x,

∴(2+x222+4x2,

x,

∴點F的縱坐標為

故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的等邊△ABC的邊AB取一點D,過點DDEAC于點E,在BC延長線取一點F,使CF=AD,連接DFAC于點G,則EG的長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點P是正方形ABCD內(nèi)部一點,且△PAB是正三角形,則∠CPD_____度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為提高節(jié)水意識,小申隨機統(tǒng)計了自己家7天的用水量,并分析了第3天的用水情況,將得到的數(shù)據(jù)進行整理后,繪制成如圖所示的統(tǒng)計圖.(單位:升)

1)求這7天內(nèi)小申家每天用水量的平均數(shù)和中位數(shù);

2)求第3天小申家洗衣服的水占這一天總用水量的百分比;

3)若規(guī)定居民生活用水收費標準為2.80元/立方米,請你估算小申家一個月(按30天計算)的水費是多少元?(1立方米=1000升)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題正確的有(  )

①如果等腰三角形的底角為15°,那么腰上的高是腰長的一半;

②三角形至少有一個內(nèi)角不大于60°

③連結任意四邊形各邊中點形成的新四邊形是平行四邊形;

④十邊形內(nèi)角和為1800°

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,公交車行駛在筆直的公路上,這條路上有,四個站點,每相鄰兩站之間的距離為5千米,從站開往站的車稱為上行車,從站開往站的車稱為下行車.第一班上行車、下行車分別從站、站同時發(fā)車,相向而行,且以后上行車、下行車每隔10分鐘分別在,站同時發(fā)一班車,乘客只能到站點上、下車(上、下車的時間忽略不計),上行車、下行車的速度均為30千米/小時.

(1)問第一班上行車到站、第一班下行車到站分別用時多少?

(2)若第一班上行車行駛時間為小時,第一班上行車與第一班下行車之間的距離為千米,求的函數(shù)關系式.

(3)一乘客前往站辦事,他在兩站間的處(不含,站),剛好遇到上行車,千米,此時,接到通知,必須在35分鐘內(nèi)趕到,他可選擇走到站或走到站乘下行車前往.若乘客的步行速度是5千米/小時,求滿足的條件.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABC0位于直角坐標平面,O為原點,A、C分別在坐標軸上,B的坐標為(8,6),線段BC上有一動點P,已知點D在第一象限.

(1)D是直線y=2x+6上一點,若△APD是等腰直角三角形,求點D的坐標;

(2)D是直線y=2x﹣6上一點,若△APD是等腰直角三角形.求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB5cmBC2cm,MN兩點分別從A,B兩點以2cm/s1cm/s的速度在矩形ABCD邊上沿逆時針方向運動,其中有一點運動到點D即停止,當運動時間為_____秒時,MBN為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,我國兩艘海監(jiān)船 A,B 在南海海域巡邏,某一時刻,兩船同時收到指令,立即前往救援遇險拋錨的漁船 C,此時,B 船在A 船的正南方向 15 海里處,A 船測得漁船 C 在其南偏東 45°方向,B 船測得漁船 C 在其南偏東 53°方向,已知 A 船的航速為 30 海里/小時,B 船的航速為 25 海里/小時,問 C 船至少要等待多長時間才能得到救援?(參考數(shù)據(jù):sin53°≈,cos53°≈,tan53°≈ 4 , 1.41 )

查看答案和解析>>

同步練習冊答案