【題目】觀察下列兩個等式:,,給出定義如下:我們稱使等式abab+1的成立的一對有理數(shù)a,b共生有理數(shù)對,記為(a,b),如:數(shù)對 ,都是共生有理數(shù)對

1)數(shù)對 , 中是共生有理數(shù)對的是   ;

2)若(mn)是共生有理數(shù)對,則(﹣n,﹣m   共生有理數(shù)對(填不是);

3)請再寫出一對符合條件的共生有理數(shù)對   ;(注意:不能與題目中已有的共生有理數(shù)對重復(fù))

4)若(a3)是共生有理數(shù)對,求a的值.

【答案】1;(2)是;(3 等;(4a=-2

【解析】

1)根據(jù)共生有理數(shù)對的定義即可判斷;
2)根據(jù)共生有理數(shù)對的定義即可解決問題;
3)根據(jù)共生有理數(shù)對的定義即可判斷;
4)根據(jù)共生有理數(shù)對的定義,構(gòu)建方程即可解決問題.

解:(1-2-1=-3-2×1+1=1,
-2-1≠-2×1+1,
∴(-2,1)不是共生有理數(shù)對,
3-=,+1=
3-=3×+1,
∴(3,)是共生有理數(shù)對;
2)是.
理由:- n -- m=- n + m =m-n,
-n-m+1=mn+1
∵(m,n)是共生有理數(shù)對
m-n=mn+1,
-n+m=mn+1
∴(-n,-m)是共生有理數(shù)對;
3等;

理由:∵,

共生有理數(shù)對,

, ,

共生有理數(shù)對;
4)由題意得:
a-3=3a+1,
解得a=-2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電視臺的一檔娛樂性節(jié)目中,在游戲PK環(huán)節(jié),為了隨機分選游戲雙方的組員,主持人設(shè)計了以下游戲:用不透明的白布包住三根顏色長短相同的細(xì)繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細(xì)繩,并拉出,若兩人選中同一根細(xì)繩,則兩人同隊,否則互為反方隊員.

(1)若甲嘉賓從中任意選擇一根細(xì)繩拉出,求他恰好抽出細(xì)繩AA1的概率;

(2)請用畫樹狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BDABC的角平分線,E,F分別在BC,AB,DEABBE=AF

(1)求證四邊形ADEF是平行四邊形;

(2)若ABC=60°,BD=4,求平行四邊形ADEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上,點A表示1,現(xiàn)將點A沿數(shù)軸做如下移動,第一次點A向左移動3個單位長度到達點A1,第二次將點A1向右移動6個單位長度到達點A2,第三次將點A2向左移動9個單位長度到達點A3,按照這種規(guī)律下去,第n次移動到點An,如果點An,與原點的距離不少于20,那么n的最小值是(

A. 11B. 12C. 13D. 20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是⊙O上一點,D的中點,BDAC于點E,過點DDFACBA的延長線于點F.

(1)求證:DF是⊙O的切線;

(2)若AF=2,FD=4,求tanBEC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的頂點為C,對稱軸為直線,且經(jīng)過點A(3,-1),與y軸交于點B.

(1)求拋物線的解析式;

(2)判斷ABC的形狀,并說明理由;

(3)經(jīng)過點A的直線交拋物線于點P,交x軸于點Q,若,試求出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是用4個全等的直角三角形與1個小正方形鑲嵌而成的正方形圖案.已知大正方形面積為49,小正方形面積為4,若用,表示直角三角形的兩直角邊,下列四個說法:①;②;③;④;其中說法正確的是  

A. ①②B. ①②③C. ①②④D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OC在∠BOD內(nèi).

1)如果∠AOC和∠BOD都是直角.

①若∠BOC=60°,則∠AOD的度數(shù)是   ;

②猜想∠BOC與∠AOD的數(shù)量關(guān)系,并說明理由;

2)如果∠AOC=BOD=x°,AOD=y°,求∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=2x-2與拋物線交于點A(1,0)和點B,且mn

(1)當(dāng)m=時,直接寫出該拋物線頂點的坐標(biāo).

(2)求點B的坐標(biāo)(用含m的代數(shù)式表示).

(3)設(shè)拋物線頂點為C,記△ABC的面積為S.

,求線段AB長度的取值范圍;

②當(dāng)時,求對應(yīng)的拋物線的函數(shù)表達式

查看答案和解析>>

同步練習(xí)冊答案