【題目】如圖,在△ABC中,點(diǎn)PQ分別在AB,AC上,且PQ∥BC,PM⊥BC于點(diǎn)M,QN⊥BC于點(diǎn)N.AD⊥BC于點(diǎn)D,交PQ于點(diǎn)E,且AD=BC.
(1)求AE:PQ的值;
(2)請(qǐng)?zhí)骄?/span>BM,CN.QN之間的等量關(guān)系,并說明理由;
(3)連接MQ,若△ABC的面積等于8,求MQ的最小值.
【答案】(1)AE:PQ=1;(2)QN=BM+CN,理由見解析;(3)當(dāng)x=4時(shí),MQ有最小值是4.
【解析】
(1)根據(jù)平行線的性質(zhì)得到AE⊥PQ,根據(jù)相似三角形的性質(zhì)得到,求得AE:PQ=AD:BC,由于AD=BC,于是得到結(jié)論;
(2)根據(jù)垂直的定義得到∠PMN=∠MNQ=∠MPQ=90°,推出四邊形PMNQ是矩形,得到PQ=MN,PM=ED,等量代換即可得到結(jié)論;
(3)根據(jù)三角形的面積得到12BCAD=8,求得BC=4,AD=4,設(shè)MN=x,則BM+CN=8x,PM=QN=8x,根據(jù)勾股定理即可得到結(jié)論.
(1)∵PQ∥BC,AD⊥BC,
∴AE⊥PQ,
∵PQ∥BC,
∴△APQ∽△ABC,
,
∴AE:PQ=AD:BC,
∵AD=BC,
∴AE:PQ=AD:BC=1;
(2)QN=BM+CN,
理由是:∵PM⊥BC,QN⊥BC,
∴∠PMN=∠MNQ=∠MPQ=90°,
∴四邊形PMNQ是矩形,
∴PQ=MN,PM=ED,
∵AE=PQ,AD=BC,
∴AE+ED=BM+MN+CN,
∴MN+QN=BM+MN+CN,
∴QN=BM+CN;
(3)∵△ABC的面積等于8,
∴BCAD=8,
∵AD=BC,
∴ BC2=8,
∴BC=4,AD=4,
設(shè)MN=x,則BM+CN=8﹣x,PM=QN=8﹣x,
∵MQ=,
∴當(dāng)x=4時(shí),MQ有最小值是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為某景區(qū)五個(gè)景點(diǎn)A,B,C,D,E的平面示意圖,B,A在C的正東方向,D在C的正北方向,D,E在B的北偏西30°方向上,E在A的西北方向上,C,D相距1000m,E在BD的中點(diǎn)處.
(1)求景點(diǎn)B,E之間的距離;
(2)求景點(diǎn)B,A之間的距離.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一組數(shù)據(jù)a1,a2,a3的平均數(shù)為4,方差為3,那么數(shù)據(jù)a1+2,a2+2,a3+2的平均數(shù)和方差分別是( 。
A. 4,3B. 6,3C. 3,4D. 6,5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(4,0),點(diǎn)B為y軸上的一動(dòng)點(diǎn),將線段AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得線段BC,若點(diǎn)C恰好落在反比例函數(shù)y=的圖象上,則點(diǎn)B的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某小區(qū)居民使用共享單車次數(shù)的情況,某研究小組隨機(jī)采訪該小區(qū)的10位居民,得到這10位居民一周內(nèi)使用共享單車的次數(shù)統(tǒng)計(jì)如下:
使用次數(shù) | 0 | 5 | 10 | 15 | 20 |
人數(shù) | 1 | 1 | 4 | 3 | 1 |
(1)這10位居民一周內(nèi)使用共享單車次數(shù)的中位數(shù)是 次,眾數(shù)是 次,平均數(shù)是 次.
(2)若小明同學(xué)把數(shù)據(jù)“20”看成了“30”,那么中位數(shù),眾數(shù)和平均數(shù)中不受影響的是 .(填“中位數(shù)”,“眾數(shù)”或“平均數(shù)”)
(3)若該小區(qū)有200名居民,試估計(jì)該小區(qū)居民一周內(nèi)使用共享單車的總次數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BC=AC=5,AB=8,CD為AB邊的高,點(diǎn)A在x軸上,點(diǎn)B在y軸上,點(diǎn)C在第一象限,若A從原點(diǎn)出發(fā),沿x軸向右以每秒1個(gè)單位長的速度運(yùn)動(dòng),則點(diǎn)B隨之沿y軸下滑,并帶動(dòng)△ABC在平面內(nèi)滑動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)B到達(dá)原點(diǎn)時(shí)停止運(yùn)動(dòng)
(1)連接OC,線段OC的長隨t的變化而變化,當(dāng)OC最大時(shí),t=____;
(2)當(dāng)△ABC的邊與坐標(biāo)軸平行時(shí),t=____。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OABC是矩形,等腰△ODE中,OE=DE,點(diǎn)A、D在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,點(diǎn)B、E在反比例函數(shù)y=的圖象上,OA=5,OC=1,則△ODE的面積為( )
A.2.5B.5C.7.5D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2013年四川南充3分)如圖,把矩形ABCD沿EF翻折,點(diǎn)B恰好落在AD邊的B′處,若AE=2,DE=6,∠EFB=60°,則矩形ABCD的面積是【 】
A.12 B. 24 C. 12 D. 16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,CD是弦,AB⊥CD,垂足為E,點(diǎn)P在⊙O上,連接BP、PD、BC.若CD=,sinP=,則⊙O的直徑為( )
A. 8 B. 6 C. 5 D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com