【題目】如圖1,以□ABCD的較短邊CD為一邊作菱形CDEF,使點(diǎn)F落在邊AD上,連接BE,交AF于點(diǎn)G.
(1)猜想BG與EG的數(shù)量關(guān)系.并說(shuō)明理由;
(2)延長(zhǎng)DE,BA交于點(diǎn)H,其他條件不變,
①如圖2,若∠ADC=60°,求的值;
②如圖3,若∠ADC=α(0°<α<90°),直接寫(xiě)出的值.(用含α的三角函數(shù)表示)
【答案】(1),理由見(jiàn)解析;(2);(3).
【解析】
(1)BG=EG,根據(jù)已知條件易證△BAG≌△EFG,根據(jù)全等三角形的對(duì)應(yīng)邊相等即可得結(jié)論;(2)①方法一:過(guò)點(diǎn)G作GM∥BH,交DH于點(diǎn)M,證明ΔGME∽ΔBHE,即可得,再證明是等邊三角形,可得 ,由此可得;方法二:延長(zhǎng),交于點(diǎn),證明ΔHBM為等邊三角形,再證明∽ ,即可得結(jié)論;②如圖3,連接EC交DF于O根據(jù)三角函數(shù)定義得cosα=,則OF=bcosα,DG=a+2bcosα,同理表示AH的長(zhǎng),代入計(jì)算即可.
(1),
理由如下:
∵四邊形是平行四邊形,
∴∥,.
∵四邊形是菱形,
∴∥,.
∴∥,.
∴.
又∵,
∴≌ .
∴.
(2)方法1:過(guò)點(diǎn)作∥,交于點(diǎn),
∴.
∵,
∴∽.
∴.
由(1)結(jié)論知.
∴.
∴.
∵四邊形為菱形,
∴.
∵四邊形是平行四邊形,
∴.
∵∥,
∴.
∴,
即.
∴是等邊三角形。
∴.
∴.
方法2:延長(zhǎng),交于點(diǎn),
∵四邊形為菱形,
∴.
∵四邊形為平形四邊形,
∴,∥.
∴.
,
即.
∴為等邊三角形.
∴.
∵∥,
∴,.
∴∽ ,
∴.
由(1)結(jié)論知
∴.
∴.
∵,
∴ .
(3). 如圖3,連接EC交DF于O,
∵四邊形CFED是菱形,
∴EC⊥AD,F(xiàn)D=2FO,
設(shè)FG=a,AB=b,則FG=a,EF=ED=CD=b,
Rt△EFO中,cosα=,
∴OF=bcosα,
∴DG=a+2bcosα,
過(guò)H作HM⊥AD于M,
∵∠ADC=∠HAD=∠ADH=α,
∴AH=HD,
∴AM=AD=(2a+2bcosα)=a+bcosα,
Rt△AHM中,cosα=,
∴AH=,
∴==cosα.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,和的平分線(xiàn)相交于點(diǎn),過(guò)作,交于點(diǎn),交于點(diǎn).若,則線(xiàn)段的長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠A=∠B=90°,AB=7,AD=2,BC=3,如果邊AB上的點(diǎn)P使得以P,A,D為頂點(diǎn)的三角形和以P,B,C為頂點(diǎn)的三角形相似,則這樣的P點(diǎn)共有幾個(gè)( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=x+4與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)C、D分別為線(xiàn)段AB、OB的中點(diǎn),點(diǎn)P為OA上一動(dòng)點(diǎn),當(dāng)PC+PD的值最小時(shí),點(diǎn)P的坐標(biāo)為( 。
A.(﹣1,0)B.(﹣2,0)C.(﹣3,0)D.(﹣4,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形ABCD是正方形,點(diǎn)E是邊BC上的任意一點(diǎn),AE⊥EF,且直線(xiàn)EF交正方形外角的平分線(xiàn)CF于點(diǎn)F.
(1)如圖1,求證:AE=EF;
(2)如圖2,當(dāng)AB=2,點(diǎn)E是邊BC的中點(diǎn)時(shí),請(qǐng)直接寫(xiě)出FC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1)請(qǐng)畫(huà)出△ABC向左平移5個(gè)單位長(zhǎng)度后得到的△A1B1C1;
(2)請(qǐng)畫(huà)出△ABC關(guān)于原點(diǎn)對(duì)稱(chēng)的△A2B2C2;并寫(xiě)出點(diǎn)A2、B2、C2坐標(biāo);
(3)請(qǐng)畫(huà)出△ABC繞O逆時(shí)針旋轉(zhuǎn)90°后的△A3B3C3;并寫(xiě)出點(diǎn)A3、B3、C3坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一輛高鐵與一輛動(dòng)車(chē)組列車(chē)在長(zhǎng)為1320千米的京滬高速鐵路上運(yùn)行,已知高鐵列車(chē)比動(dòng)車(chē)組列車(chē)平均速度每小時(shí)快99千米,且高鐵列車(chē)比動(dòng)車(chē)組列車(chē)全程運(yùn)行時(shí)間少3小時(shí),求這輛高鐵列車(chē)全程運(yùn)行的時(shí)間和平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)的坐標(biāo)為,軸,垂足為,軸,垂足為,點(diǎn)分別是射線(xiàn)、上的動(dòng)點(diǎn),且點(diǎn)不與點(diǎn)、重合,.
(1)如圖1,當(dāng)點(diǎn)在線(xiàn)段上時(shí),求的周長(zhǎng);
(2)如圖2,當(dāng)點(diǎn)在線(xiàn)段的延長(zhǎng)線(xiàn)上時(shí),設(shè)的面積為,的面積為,請(qǐng)猜想與之間的等量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊三角形ABC的邊長(zhǎng)為4,AD是BC邊上的中線(xiàn),F是AD邊上的動(dòng)點(diǎn),E是AC邊上一點(diǎn).若AE=2,當(dāng)EF+CF取得最小值時(shí),∠ECF的度數(shù)為( )
A. 20° B. 25° C. 30° D. 45°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com