【題目】下面是小明設(shè)計(jì)的“作三角形的高線”的尺規(guī)作圖過程.

已知:△ABC

求作:BC邊上的高線.

作法:如圖,

①分別以A,B為圓心,大于長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)D,E;

②作直線DE,與AB交于點(diǎn)F,以點(diǎn)F為圓心,FA長(zhǎng)為半徑畫圓,交CB的延長(zhǎng)線于點(diǎn)G;

③連接AG

所以線段AG就是所求作的BC邊上的高線.

根據(jù)小明設(shè)計(jì)的尺規(guī)作圖過程,

1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

2)完成下面證明.

證明:連接DA,DB,EAEB

DA=DB,

∴點(diǎn)D在線段AB的垂直平分線上( )(填推理的依據(jù)).

=

∴點(diǎn)E在線段AB的垂直平分線上.

DE是線段AB的垂直平分線.

FA=FB

AB是⊙F的直徑.

∴∠AGB=90°( )(填推理的依據(jù)).

AGBC

AG就是BC邊上的高線.

【答案】1)見解析;(2)到線段兩端距離相等的點(diǎn)在這條線段的垂直平分線上;EA,EB;直徑所對(duì)的圓周角是直角.

【解析】

1)根據(jù)題中步驟,補(bǔ)全圖形即可;

2)根據(jù)作圖可知DE是線段AB的垂直平分線,FA=FB,然后根據(jù)直徑所對(duì)的圓周角是直角證明AGBC邊上的高線.

解:(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

2)證明:連接DADB,EAEB,

DA=DB,

∴點(diǎn)D在線段AB的垂直平分線上(到線段兩端距離相等的點(diǎn)在這條線段的垂直平分線上)(填推理的依據(jù)).

EA=EB,

∴點(diǎn)E在線段AB的垂直平分線上.

DE是線段AB的垂直平分線.

FA=FB

AB是⊙F的直徑.

∴∠AGB=90°(直徑所對(duì)的圓周角是直角)(填推理的依據(jù)).

AGBC

AG就是BC邊上的高線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,∠ACB=90°,OC=2OB,tan∠ABC=2,點(diǎn)B的坐標(biāo)為(1,0).拋物線y=﹣x2+bx+c經(jīng)過A、B兩點(diǎn).

(1)求拋物線的解析式;

(2)點(diǎn)P是直線AB上方拋物線上的一點(diǎn),過點(diǎn)P作PD垂直x軸于點(diǎn)D,交線段AB于點(diǎn)E,使PE=DE.

①求點(diǎn)P的坐標(biāo);

②在直線PD上是否存在點(diǎn)M,使△ABM為直角三角形?若存在,求出符合條件的所有點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在菱形ABCD,F為邊AB的中點(diǎn),DF與對(duì)角線AC交于點(diǎn)G,GGEAD于點(diǎn)E,AB=2,且∠1=2,則下列結(jié)論:①DFAB;CG=3GA;CG=DF+GE;S四邊形BFGC=1,說法正確的是( )

A. ①③④B. ②③C. ①③D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某批發(fā)市場(chǎng)有中招考試文具套裝,其中A品牌的批發(fā)價(jià)是每套20元,B品牌的批發(fā)價(jià)是每套25元,小王需購買A、B兩種品牌的文具套裝共1000套.

(1)若小王按需購買A、B兩種品牌文具套裝共用22000元,則各購買多少套?

(2)憑會(huì)員卡在此批發(fā)市場(chǎng)購買商品可以獲得8折優(yōu)惠,會(huì)員卡費(fèi)用為500元.若小王購買會(huì)員卡并用此卡按需購買1000套文具套裝,共用了y元,設(shè)A品牌文具套裝買了x包,請(qǐng)求出y與x之間的函數(shù)關(guān)系式.

(3)若小王購買會(huì)員卡并用此卡按需購買1000套文具套裝,共用了20000元,他計(jì)劃在網(wǎng)店包郵銷售這兩種文具套裝,每套文具套裝小王需支付郵費(fèi)8元,若A品牌每套銷售價(jià)格比B品牌少5元,請(qǐng)你幫他計(jì)算,A品牌的文具套裝每套定價(jià)不低于多少元時(shí)才不虧本(運(yùn)算結(jié)果取整數(shù))?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上,王老師讓同學(xué)們對(duì)給定的正方形ABCD,如圖.建立合適的平面直角坐標(biāo)系,并表示出各頂點(diǎn)的坐標(biāo).下面是4名同學(xué)表示各頂點(diǎn)坐標(biāo)的結(jié)果:

甲同學(xué):A01),B00),C1,0),D1,1);

乙同學(xué):A00),B0,-1),C1,-1),D1,0);

丙同學(xué):A1,0),B1,-2),C3,-2),D3,0);

丁同學(xué):A(-12),B(-1,0),C00),D0,2);

上述四名同學(xué)表示的結(jié)果中,四個(gè)點(diǎn)的坐標(biāo)都表示正確的同學(xué)是( )

A. 甲、乙、丙B. 乙、丙、丁C. 甲、丙D. 甲、乙、丙、丁

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在中,,

1)如圖1,將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,連結(jié)、的平分線交于點(diǎn),連結(jié)

①求證:;②用等式表示線段、、之間的數(shù)量關(guān)系(直接寫出結(jié)果);

2)在圖2中,若將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,連結(jié),的平分線交的延長(zhǎng)線于點(diǎn),連結(jié).請(qǐng)補(bǔ)全圖形,并用等式表示線段、之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰△ABC中,ABBC8,∠ABC120°,BE是∠ABC的平分線,交ACE,點(diǎn)DAB的中點(diǎn),連接DE,作EFAB于點(diǎn)F

1)求證四邊形BDEF是菱形;

2)如圖以DF為一邊作矩形DFHG,且點(diǎn)E是此矩形的對(duì)稱中心,求矩形另一邊的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的口袋中裝有4個(gè)完全相同的小球,分別標(biāo)有數(shù)字12,3,4,另外有一個(gè)可以自由旋轉(zhuǎn)的圓盤,被分成面積相等的3個(gè)扇形區(qū)域,分別標(biāo)有數(shù)字1,2,3(如圖所示).

1)從口袋中摸出一個(gè)小球,所摸球上的數(shù)字大于2的概率為 ;

2)小龍和小東想通過游戲來決定誰代表學(xué)校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個(gè)小球,另一人轉(zhuǎn)動(dòng)圓盤,如果所摸球上的數(shù)字與圓盤上轉(zhuǎn)出數(shù)字之和小于5,那么小龍去;否則小東去.你認(rèn)為游戲公平嗎?請(qǐng)用樹狀圖或列表法說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長(zhǎng)線交BA的延長(zhǎng)線于點(diǎn)G,CE的延長(zhǎng)線交DA的延長(zhǎng)線于點(diǎn)H,連接AC,EF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)線段AC,AG,AH什么關(guān)系?請(qǐng)說明理由;

(3)設(shè)AEm,

①△AGH的面積S有變化嗎?如果變化.請(qǐng)求出Sm的函數(shù)關(guān)系式;如果不變化,請(qǐng)求出定值.

②請(qǐng)直接寫出使△CGH是等腰三角形的m值.

查看答案和解析>>

同步練習(xí)冊(cè)答案