【題目】如圖,lA、lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關(guān)系.

(1)B出發(fā)時與A相距______千米;

(2)走了一段路后,自行車發(fā)生故障,進(jìn)行修理,所用的時間是______小時;

(3)B再次出發(fā)后______小時與A相遇;

(4)求出A行走的路程S與時間t的函數(shù)關(guān)系式(寫出過程)

(5)B的自行車不發(fā)生故障,保持出發(fā)時的速度前進(jìn),幾小時與A相遇?在圖中表示出這個相遇點C.

【答案】110;(21;(31.5;(4;(5小時,畫圖見解析.

【解析】

1)根據(jù)圖像和題意,當(dāng)t=0即可得出結(jié)論;

2)觀察圖像即可得出結(jié)論;

3)觀察圖像即可得出結(jié)論;

4)設(shè)直線lA的解析式為S=kt+bk0),然后分別將(0,10)和(3,22.5)代入即可求出A行走的路程S與時間t的函數(shù)關(guān)系式;

5)根據(jù)題意,分別求出AB的速度,然后根據(jù)公式:追及時間=路程差÷速度差,即可求出B追上A所需的時間,最后畫圖即可.

解:(1)由圖像可知:當(dāng)t=0時,BA相距10千米

故答案為10

2)由圖像可知:修理自行車所用的時間為:1.50.5=1小時

故答案為:1;

3)由圖像可知:B再次出發(fā)后,31.5=1.5小時與A相遇

故答案為:1.5

4)設(shè)直線lA的解析式為S=kt+bk0),

分別將(0,10)和(322.5)代入,得

解得:

A行走的路程S與時間t的函數(shù)關(guān)系式為:;

5)由圖像可知:A的速度為:(22.510)÷3=(千米/小時)

B的自行車不發(fā)生故障,B的速度為:7.5÷0.5=15(千米/小時)

A、B的路程差為:10千米

∴若B的自行車不發(fā)生故障,B追上A所需的時間為:10÷(15=小時.

如下圖所示,點C即為所求.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線

當(dāng)拋物線的頂點在軸上時,求該拋物線的解析式;

不論取何值時,拋物線的頂點始終在一條直線上,求該直線的解析式;

若有兩點,且該拋物線與線段始終有交點,請直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)研究發(fā)現(xiàn),一般情況下,在一節(jié)分鐘的課中,學(xué)生的注意力隨學(xué)習(xí)時間的變化而變化.開始學(xué)習(xí)時,學(xué)生的注意力逐步增強,中間有一段時間學(xué)生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學(xué)生的注意力開始分散.經(jīng)過實驗分析可知,學(xué)生的注意力指標(biāo)數(shù)隨時間(分鐘)的變化規(guī)律如下圖所示(其中分別為線段,為雙曲線的一部分).

求注意力指標(biāo)數(shù)與時間(分鐘)之間的函數(shù)關(guān)系式;

開始學(xué)習(xí)后第分鐘時與第分鐘時相比較,何時學(xué)生的注意力更集中?

某些數(shù)學(xué)內(nèi)容的課堂學(xué)習(xí)大致可分為三個環(huán)節(jié):即教師引導(dǎo),回顧舊知;自主探索,合作交流;總結(jié)歸納,鞏固提高.其中教師引導(dǎo),回顧舊知環(huán)節(jié)分鐘;重點環(huán)節(jié)自主探索,合作交流這一過程一般

需要分鐘才能完成,為了確保效果,要求學(xué)習(xí)時的注意力指標(biāo)數(shù)不低于.請問這樣的課堂學(xué)習(xí)安排是否合理?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3cm,動點M從點B出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達(dá)點A停止運動,另一動點N同時從點B出發(fā),以1cm/s的速度沿著邊BA向點A運動,到達(dá)點A停止運動,設(shè)點M運動時間為x(s),AMN的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的袋子里共有2個黃球和3個白球,每個球除顏色外都相同,小亮從袋子中任意摸出一個球,結(jié)果是白球,則下面關(guān)于小亮從袋中摸出白球的概率和頻率的說明正確的是( 。

A. 小亮從袋中任意摸出一個球,摸出白球的概率是1

B. 小亮從袋中任意摸出一個球,摸出白球的概率是0

C. 在這次實驗中,小亮摸出白球的頻率是1

D. 由這次實驗的頻率去估計小亮從袋中任意摸出一個球,摸出白球的概率是1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在復(fù)習(xí)課上,彭老師提出了一個問題,假如你是彭老師的學(xué)生,你能解決這個問題嗎?試試吧!

命題有兩邊和其中一邊上的中線對應(yīng)相等的兩個三角形全等是真命題嗎?若是,請畫出圖形,寫出已知、求證和證明:如不是,請舉出反例.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的文字后,解答問題:

有這樣一道題目:“如圖,E、D是△ABCBC邊上的兩點,ADAE,   .求證△ABE≌△ACD.請根據(jù)你的理解,在題目中的空格內(nèi),把原題補充完整(添加一個適當(dāng)?shù)臈l件),并寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究:在邊長為4的正方形ABCD中,對角線AC、BD交于點O

探究1:如圖1,若點P是對角線BD上任意一點,求線段AP的長的取值范圍;

探究2:如圖2,若點P是△ABC內(nèi)任意一點,點M、N分別是AB邊和對角線AC上的兩個動點,則當(dāng)AP的值在探究1中的取值范圍內(nèi)變化時,△PMN的周長是否存在最小值?如果存在,請求出△PMN周長的最小值,若不存在,請說明理由;

問題解決:如圖3,在邊長為4的正方形ABCD中,點P是△ABC內(nèi)任意一點,且AP=4,點MN分別是AB邊和對角線AC上的兩個動點,則當(dāng)△PMN的周長取到最小值時,直接求四邊形AMPN面積的最大值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2bxc的圖象如圖所示,根據(jù)圖象解答下列問題:

(1)寫出方程ax2bxc=0的兩個根;

(2)當(dāng)x為何值時,y>0?當(dāng)x為何值時,y<0?

(3)寫出yx的增大而減小的自變量x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案