【題目】用各種盛水容器可以制作精致的家用流水景觀(如圖1).

科學(xué)原理:如圖2,始終盛滿水的圓體水桶水面離地面的高度為H(單位:m),如果在離水面豎直距離為h(單校:cm)的地方開大小合適的小孔,那么從小孔射出水的射程(水流落地點(diǎn)離小孔的水平距離)s(單位:cm)與h的關(guān)系為s2=4hH—h).

應(yīng)用思考:現(xiàn)用高度為20cm的圓柱體望料水瓶做相關(guān)研究,水瓶直立地面,通過連注水保證它始終盛滿水,在離水面豎直距高h cm處開一個(gè)小孔.

1)寫出s2h的關(guān)系式;并求出當(dāng)h為何值時(shí),射程s有最大值,最大射程是多少?

2)在側(cè)面開兩個(gè)小孔,這兩個(gè)小孔離水面的豎直距離分別為ab,要使兩孔射出水的射程相同,求ab之間的關(guān)系式;

3)如果想通過墊高塑料水瓶,使射出水的最大射程增加16cm,求整高的高度及小孔離水面的豎直距離.

【答案】1,當(dāng)時(shí),;(2;(3)墊高的高度為16cm,小孔離水面的豎直距離為18cm

【解析】

1)將s2=4h(20-h)寫成頂點(diǎn)式,按照二次函數(shù)的性質(zhì)得出s2的最大值,再求s2的算術(shù)平方根即可;

2)設(shè)存在ab,使兩孔射出水的射程相同,則4a(20-a)=4b(20-b),利用因式分解變形即可得出答案;

3)設(shè)墊高的高度為m,寫出此時(shí)s2關(guān)于h的函數(shù)關(guān)系式,根據(jù)二次函數(shù)的性質(zhì)可得答案.

解:(1)s2=4h(H-h),

∴當(dāng)H=20時(shí),s2=4h(20-h)=-4(h-10)2+400

∴當(dāng)h=10時(shí),s2有最大值400,

∴當(dāng)h=10時(shí),s有最大值20cm

∴當(dāng)h為何值時(shí),射程s有最大值,最大射程是20cm;

故答案為:最大射程是20cm.

(2) s2=4h(20-h),

設(shè)存在a,b,使兩孔射出水的射程相同,則有:

4a(20-a)=4b(20-b),

20a-a2=20b-b2

a2-b2=20a-20b,

(a+b)(a-b)=20(a-b)

(a-b)(a+b-20)=0,

a-b=0a+b-20=0

a=ba+b=20.

故答案為:a=ba+b=20.

(3)設(shè)墊高的高度為m,則

∴當(dāng)時(shí),

時(shí),此時(shí)

∴墊高的高度為16cm,小孔離水面的豎直距離為18cm

故答案為:墊高的高度為16cm,小孔離水面的豎直距離為18cm.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線x軸的交點(diǎn)為A、D(AD的右側(cè)),與y軸的交點(diǎn)為C

1)直接寫出A、D、C三點(diǎn)的坐標(biāo);

2)若點(diǎn)M在拋物線上,使得MAD的面積與CAD的面積相等,求點(diǎn)M的坐標(biāo);

3)設(shè)點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為B,在拋物線上是否存在點(diǎn)P,使得以ABC、P四點(diǎn)為頂點(diǎn)的四邊形為梯形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC和△DCE都是等邊三角形.

探究發(fā)現(xiàn)

1)△BCD與△ACE是否全等?若全等,加以證明;若不全等,請(qǐng)說明理由.

拓展運(yùn)用

2)若B、C、E三點(diǎn)不在一條直線上,∠ADC30°,AD3CD2,求BD的長(zhǎng).

3)若B、CE三點(diǎn)在一條直線上(如圖2),且△ABC和△DCE的邊長(zhǎng)分別為12,求△ACD的面積及AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別在x軸和y軸上,OC=3,OA=,D是BC的中點(diǎn),將OCD沿直線OD折疊后得到OGD,延長(zhǎng)OG交AB于點(diǎn)E,連接DE,則點(diǎn)G的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用四塊大正方形地磚和一塊小正方形地磚拼成如圖所示的實(shí)線圖案,每塊大正方形地磚面積為a,小正方形地磚面積為依次連接四塊大正方形地磚的中心得到正方形ABCD.則正方形ABCD的面積為____________(用含a,b的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線的頂點(diǎn)是A(1,3),將OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)后得到OB,點(diǎn)B恰好在拋物線上,OB與拋物線的對(duì)稱軸交于點(diǎn)C

1)求拋物線的解析式;

2P是線段AC上一動(dòng)點(diǎn),且不與點(diǎn)A,C重合,過點(diǎn)P作平行于x軸的直線,與的邊分別交于M,N兩點(diǎn),將以直線MN為對(duì)稱軸翻折,得到

設(shè)點(diǎn)P的縱坐標(biāo)為m

①當(dāng)內(nèi)部時(shí),求m的取值范圍;

②是否存在點(diǎn)P,使,若存在,求出滿足m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=-x2+bx+c經(jīng)過點(diǎn)A3,0)和點(diǎn)B2,3),過點(diǎn)A的直線與y軸的負(fù)半軸相交于點(diǎn)C,且tanCAO=

1)求這條拋物線的表達(dá)式及對(duì)稱軸;

2)聯(lián)結(jié)ABBC,求∠ABC的正切值;

3)若點(diǎn)Dx軸下方的對(duì)稱軸上,當(dāng)SDBC=SADC時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線x軸于AB兩點(diǎn),其中點(diǎn)A坐標(biāo)為,與y軸交于點(diǎn)C,且對(duì)稱軸在y軸的左側(cè),拋物線的頂點(diǎn)為P.

(1)當(dāng)時(shí),求拋物線的頂點(diǎn)坐標(biāo);

(2)當(dāng)時(shí),求b的值;

(3)在(1)的條件下,點(diǎn)Qx軸下方拋物線上任意一點(diǎn),點(diǎn)D是拋物線對(duì)稱軸與x軸的交點(diǎn),直線、分別交拋物線的對(duì)稱軸于點(diǎn)M、N.請(qǐng)問是否為定值?如果是,請(qǐng)求出這個(gè)定值;如果不是,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線x+6y軸交于點(diǎn)A,與x軸交于點(diǎn)D,直線ABx軸于點(diǎn)B,將AOB沿直線AB折疊,點(diǎn)O恰好落在直線AD上的點(diǎn)C處.

1)求OB的長(zhǎng);

2)如圖2F,G是直線AB上的兩點(diǎn),若DFG是以FG為斜邊的等腰直角三角形,求點(diǎn)F的坐標(biāo);

3)如圖3,點(diǎn)P是直線AB上一點(diǎn),點(diǎn)Q是直線AD上一點(diǎn),且P,Q均在第四象限,點(diǎn)Ex軸上一點(diǎn),若四邊形PQDE為菱形,求點(diǎn)E的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案