【題目】如圖,點A是反比例函數(shù)y1= (x>0)圖象上一點,過點A作x軸的平行線,交反比例函數(shù)y2= (x>0)的圖象于點B,連接OA,OB,若△OAB的面積為2,則k2﹣k1的值為( )

A.﹣2
B.2
C.﹣4
D.4

【答案】D
【解析】解:延長BA交y軸于點D,如圖所示.

∵點A、B是函數(shù)y= (x>0)和y= (x>0)圖象上一點,

∴SAOD= k1,SOBD= k2,

∴SOAB=SBOD﹣SAOD=2.

k2 k1=2,

則k2﹣k1=4.

所以答案是:D.

【考點精析】本題主要考查了比例系數(shù)k的幾何意義的相關(guān)知識點,需要掌握幾何意義:表示反比例函數(shù)圖像上的點向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AEBD于點E,CFBD于點F,連結(jié)AF、CE

(1)求證:四邊形AECF是平行四邊形;

(2)AB6,AD2,∠ABD30°,求四邊形AECF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,∠B=90°,AD=8cm,BC=10cmAB=6cm,點Q從點A出發(fā)以1 cm/s的速度向點D運動,點P從點B出發(fā)以2 cm/s的速度向點C運動,PQ兩點同時出發(fā),當(dāng)點P到達(dá)點C時,兩點同時停止運動.若設(shè)運動時間為ts

1)直接寫出:QD=______cmPC=_______cm;(用含t的式子表示)

2)當(dāng)t為何值時,四邊形PQDC為平行四邊形?

3)若點P與點C不重合,且DQ≠DP,當(dāng)t為何值時,DPQ是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在△ABC中,∠ACB=90°,AC=BC,CDAB于點D,點EF分別在AC、BC上,且∠EDF90°.

1)求證:△AED≌△CFD;

2)試判斷CECFCD之間的數(shù)量關(guān)系,并說明理由;

3)若CF=1,CE=3,試求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:某社區(qū)超市第一次用6000元購進(jìn)甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的倍多15件,甲、乙兩種商品的進(jìn)價和售價如下表:(注:獲利=售價-進(jìn)價)

1)該超市將第一次購進(jìn)的甲、乙兩種商品全部賣完后一共可獲得多少利潤?

2)該超市第二次以第一次的進(jìn)價又購進(jìn)甲、乙兩種商品,其中甲種商品的件數(shù)不變,乙種商品的件數(shù)是第一次的3倍;甲商品按原價銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得的總利潤比第一次獲得的總利潤多180元,求第二次乙種商品是按原價打幾折銷售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校數(shù)學(xué)興趣小組成員小華對本班上學(xué)期期末考試數(shù)學(xué)成績(成績?nèi)≌麛?shù),滿分為100分)作了統(tǒng)計分析,繪制成如下頻數(shù)分布直方圖和頻數(shù)、頻率分布表.請你根據(jù)圖表提供的信息,解答下列問題:

分組

49.559.5

59.569.5

69.579.5

79.589.5

89.5100.5

合計

頻數(shù)

2

20

16

4

50

頻率

0.04

0.16

0.40

0.32

1

1)頻數(shù)、頻率分布表中 ;

2)補全頻數(shù)分布直方圖;

3)數(shù)學(xué)老師準(zhǔn)備從不低于90分的學(xué)生中選1人介紹學(xué)習(xí)經(jīng)驗,那么取得了93分的小華被選上的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程組:

1

2;

3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某一天,水果經(jīng)營戶老張用1600元從水果批發(fā)市場批發(fā)獼猴桃和芒果共50千克,后再到水果市場去賣,已知獼猴桃和芒果當(dāng)天的批發(fā)價和零售價如表所示:

品名

獼猴桃

芒果

批發(fā)價千克

20

40

零售價千克

26

50

他購進(jìn)的獼猴桃和芒果各多少千克?

如果獼猴桃和芒果全部賣完,他能賺多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點C在⊙O上,過點C的直線與AB的延長線交于點P,AC=PC,∠COB=2∠PCB.

(1)求證:PC是⊙O的切線;
(2)求證:BC= AB;
(3)點M是 的中點,CM交AB于點N,若AB=4,求MNMC的值.

查看答案和解析>>

同步練習(xí)冊答案