【題目】如圖所示,在平面直角坐標(biāo)系xoy中,直線y=x+交x軸于點(diǎn)B,交y軸于點(diǎn)A,過(guò)點(diǎn)C(1,0)作x軸的垂線l,將直線l繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn),旋轉(zhuǎn)角為α(0°<α<180°).
(1)當(dāng)直線l與直線y=x+平行時(shí),求出直線l的解析式;
(2)若直線l經(jīng)過(guò)點(diǎn)A,①求線段AC的長(zhǎng);②直接寫出旋轉(zhuǎn)角α的度數(shù);
(3)若直線l在旋轉(zhuǎn)過(guò)程中與y軸交于D點(diǎn),當(dāng)△ABD、△ACD、△BCD均為等腰三角形時(shí),直接寫出符合條件的旋轉(zhuǎn)角α的度數(shù).
【答案】(1)y=x;(2)①AC=2;②α=30°;(3)α=15°或60°或105°或150°
【解析】
(1)設(shè)直線l的解析式為y=x+b,把點(diǎn)C(1,0)代入求出b即可;
(2)①求出點(diǎn)A的坐標(biāo),利用兩點(diǎn)間距離公式即可求出AC的長(zhǎng);②如圖1中,由CE∥OA,推出∠ACE=∠OAC,由tan∠OAC=,推出∠OAC=30°,即可解決問(wèn)題;
(3)根據(jù)等腰三角形的判定和性質(zhì),分情況作出圖形,進(jìn)行求解即可.
解:(1)當(dāng)直線l與直線y=x+平行時(shí),設(shè)直線l的解析式為y=x+b,
∵直線l經(jīng)過(guò)點(diǎn)C(1,0),
∴0=+b,
∴b=,
∴直線l的解析式為y=x;
(2)①對(duì)于直線y=x+,令x=0得y=,令y=0得x=1,
∴A(0,),B(1,0),
∵C(1,0),
∴AC=,
②如圖1中,作CE∥OA,
∴∠ACE=∠OAC,
∵tan∠OAC=,
∴∠OAC=30°,
∴∠ACE=30°,
∴α=30°;
(3)①如圖2中,當(dāng)α=15°時(shí),
∵CE∥OD,
∴∠ODC=15°,
∵∠OAC=30°,
∴∠ACD=∠ADC=15°,
∴AD=AC=AB,
∴△ADB,△ADC是等腰三角形,
∵OD垂直平分BC,
∴DB=DC,
∴△DBC是等腰三角形;
②當(dāng)α=60°時(shí),易知∠DAC=∠DCA=30°,
∴DA=DC=DB,
∴△ABD、△ACD、△BCD均為等腰三角形;
③當(dāng)α=105°時(shí),易知∠ABD=∠ADB=∠ADC=∠ACD=75°,∠DBC=∠DCB=15°,
∴△ABD、△ACD、△BCD均為等腰三角形;
④當(dāng)α=150°時(shí),易知△BDC是等邊三角形,
∴AB=BD=DC=AC,
∴△ABD、△ACD、△BCD均為等腰三角形,
綜上所述:當(dāng)α=15°或60°或105°或150°時(shí),△ABD、△ACD、△BCD均為等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)中學(xué)生體質(zhì)健康綜合評(píng)定成績(jī)?yōu)?/span>x分,滿分為100分,規(guī)定:85≤x≤100為A級(jí);75≤x<85為B級(jí);60≤x<75為C級(jí);x<60為D級(jí).現(xiàn)隨機(jī)抽取某中學(xué)部分學(xué)生的綜合評(píng)定成績(jī),整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,解答下列問(wèn)題:
(1)在這次調(diào)查中,一共抽取了 名學(xué)生,A級(jí)人數(shù)占本次抽取人數(shù)的百分比為 %;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)扇形統(tǒng)計(jì)圖中C級(jí)對(duì)應(yīng)的圓心角為 度;
(4)若該校共有1000名學(xué)生,請(qǐng)你估計(jì)該校D級(jí)學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為節(jié)約水資源,制定了新的居民用水收費(fèi)標(biāo)準(zhǔn).按照新標(biāo)準(zhǔn),用戶每月繳納的水費(fèi)y(元)與每月用水量x(m3)之間的關(guān)系如圖所示.
(1)求y關(guān)于x的函數(shù)解析式;
(2)若某用戶二、三月份共用水40m3(二月份用水量不超過(guò)25m3),繳納水費(fèi)79.8元,則該用戶二、三月份的用水量各是多少m3?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=CB,∠ABC=90°,F為AB延長(zhǎng)線上一點(diǎn),點(diǎn)E在線段BC上,且AE=CF,連接EF.
(1)如圖,已知線段AB,請(qǐng)補(bǔ)全圖形,畫出符合題意的圖形.
(2)求證:BE=BF.
(3)若∠EAC=30°,則∠CFE是多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A,B,C在半徑為4的⊙O上,過(guò)點(diǎn)C作⊙O的切線交OA的延長(zhǎng)線于點(diǎn)D.
(Ⅰ)若∠ABC=29°,求∠D的大小;
(Ⅱ)若∠D=30°,∠BAO=15°,作CE⊥AB于點(diǎn)E,求:
①BE的長(zhǎng);
②四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖, AB是⊙O的直徑,AM和BN是⊙O的兩條切線,點(diǎn)D是AM上一點(diǎn),聯(lián)結(jié)OD , 作BE∥OD交⊙O于點(diǎn)E, 聯(lián)結(jié)DE并延長(zhǎng)交BN于點(diǎn)C.
(1)求證:DC是⊙O的切線;
(2)若AD=l,BC=4,求直徑AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了從甲、乙兩名學(xué)生中選派一名學(xué)生參加市綜合知識(shí)技能競(jìng)賽,對(duì)他們進(jìn) 行了 8 次綜合知識(shí)技能測(cè)試,記錄如下:
學(xué)生 | 8 次測(cè)試成績(jī)(分) | 平均數(shù) | 中位數(shù) | 方差 | |||||||
甲 | 95 | 82 | 88 | 81 | 93 | 79 | 84 | 78 | 85 | 35.5 | |
乙 | 83 | 92 | 80 | 95 | 90 | 80 | 85 | 75 | 84 |
(1)請(qǐng)你通過(guò)計(jì)算求出表格中所缺少的甲、乙兩名學(xué)生這 8 次測(cè)試成績(jī)的平均數(shù)、中位數(shù) 和方差;
(2)現(xiàn)要從中選派一人參加市綜合知識(shí)技能競(jìng)賽,你認(rèn)為選派哪名同學(xué)參加合適,請(qǐng)說(shuō)明 理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C為線段AE上一動(dòng)點(diǎn)(不與A.E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ,以下五個(gè)結(jié)論:①AD=BE;②PQ∥AE;③CP=CQ;④BO=OE;⑤∠AOB=60°,一定成立的有________(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖表示一個(gè)正比例函數(shù)與一個(gè)一次函數(shù)的圖象,它們交于點(diǎn)A(3,4),一次函數(shù)的圖象與y軸交于點(diǎn)B,且OA=0B
(1)求這兩個(gè)函數(shù)的關(guān)系式;
(2)兩直線與x軸圍成的三角形的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com