已知∠AOB內(nèi)部有三條射線,其中OE平分∠BOC,OF平分∠AOC.
(1)如圖1,若∠AOB=90°,∠AOC=30°,求EOF的度數(shù);
(2)如圖2,若∠AOB=α,求∠EOF的度數(shù)(用含α的式子表示);
(3)若將題中的“OE平分∠BOC,OF平分∠AOC”的條件改為“∠EOB=∠BOC,∠COF=∠AOC”,且∠AOB=α,求∠EOF的度數(shù)(用含α的式子表示)
【考點(diǎn)】角的計(jì)算;角平分線的定義.
【分析】(1)首先求得∠BOC的度數(shù),然后根據(jù)角的平分線的定義和角的和差可得∠EOF=∠EOC+∠COF即可求解;
(2)根據(jù)角的平分線的定義和角的和差可得∠EOF=∠EOC+∠COF=∠BOC+∠AOC=(∠BOC+∠AOC),即可求解;
(3)根據(jù)角的等分線的定義可得∠EOF=∠EOC+∠COF=∠BOC+∠AOC=(∠BOC+∠AOC)=∠AOB,即可求解.
【解答】解:(1)∠BOC=∠AOB﹣∠AOC=90°﹣30°=60°,
∵OE平分∠BOC,OF平分∠AOC,
∴∠EOC=∠BOC=×60°=30°,∠COF=∠AOC=×30°=15°,
∴∠EOF=∠EOC+∠COF=30°+15°=45°;
(2)∵OE平分∠BOC,OF平分∠AOC,
∴∠EOC=∠BOC,∠COF=∠AOC,
∴∠EOF=∠EOC+∠COF=∠BOC+∠AOC=(∠BOC+∠AOC)=∠AOB=a;
(3)∵∠EOB=∠BOC,
∴∠EOC=∠BOC,
又∵∠COF=∠AOC,
∴∠EOF=∠EOC+∠COF=∠BOC+∠AOC=(∠BOC+∠AOC)=∠AOB=a.
【點(diǎn)評(píng)】本題考查了角度的計(jì)算,理解角的平分線的定義以及角度的和、差之間的關(guān)系是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,四邊形ABCD中,∠A+∠B=200°,∠ADC、∠DCB的平分線相交于點(diǎn)O,則∠COD的度數(shù)是( )
A.110° B.100° C.90° D.80°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)是A(﹣7,1),B(1,1),C(1,7).線段DE的端點(diǎn)坐標(biāo)是D(7,﹣1),E(﹣1,﹣7).
(1)試說(shuō)明如何平移線段AC,使其與線段ED重合;
(2)將△ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn),使AC的對(duì)應(yīng)邊為DE,請(qǐng)直接寫(xiě)出點(diǎn)B的對(duì)應(yīng)點(diǎn)F的坐標(biāo);
(3)畫(huà)出(2)中的△DEF,并和△ABC同時(shí)繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,畫(huà)出旋轉(zhuǎn)后的圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
關(guān)于x的一元二次方程x2﹣k=0有實(shí)數(shù)根,則( 。
A.k<0 B.k>0 C.k≥0 D.k≤0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
在同一平面直角坐標(biāo)系內(nèi),一次函數(shù)y=ax+b與二次函數(shù)y=ax2+5x+b的圖象可能是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com