【題目】如圖,在△ABC中,AB=AC,∠BAC=54°,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,過點(diǎn)B作直線BF,交AC的延長(zhǎng)線于點(diǎn)F.
(1)求證:BE=CE;
(2)若AB=6,求弧DE的長(zhǎng);
(3)當(dāng)∠F的度數(shù)是多少時(shí),BF與⊙O相切,證明你的結(jié)論.
【答案】(1)證明見解析;(2)弧DE的長(zhǎng)為π;(3)當(dāng)∠F的度數(shù)是36°時(shí),BF與⊙O相切.理由見解析.
【解析】
(1)連接AE,求出AE⊥BC,根據(jù)等腰三角形性質(zhì)求出即可;
(2)根據(jù)圓周角定理求出∠DOE的度數(shù),再根據(jù)弧長(zhǎng)公式進(jìn)行計(jì)算即可;
(3)當(dāng)∠F的度數(shù)是36°時(shí),可以得到∠ABF=90°,由此即可得BF與⊙O相切.
(1)連接AE,如圖,
∵AB為⊙O的直徑,
∴∠AEB=90°,
∴AE⊥BC,
∵AB=AC,
∴BE=CE;
(2)∵AB=AC,AE⊥BC,
∴AE平分∠BAC,
∴∠CAE=∠BAC=×54°=27°,
∴∠DOE=2∠CAE=2×27°=54°,
∴弧DE的長(zhǎng)=;
(3)當(dāng)∠F的度數(shù)是36°時(shí),BF與⊙O相切,
理由如下:∵∠BAC=54°,
∴當(dāng)∠F=36°時(shí),∠ABF=90°,
∴AB⊥BF,
∴BF為⊙O的切線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC的中點(diǎn),四邊形ABDE是平行四邊形.
(1)求證:四邊形ADCE是矩形;
(2)若AC、DE交于點(diǎn)O,四邊形ADCE的面積為16,CD=4,求∠AOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某小區(qū)規(guī)劃在長(zhǎng)20米,寬10米的矩形場(chǎng)地ABCD上修建三條同樣寬的小路,使其中兩條與AD平行,一條與AB平行,其余部分種草,若使草坪的面積為162米2,問小路應(yīng)為多寬?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=和y=在第一象限內(nèi)的圖象如圖,點(diǎn)P是y=的圖象上一動(dòng)點(diǎn),PC⊥x軸于點(diǎn)C,交y=的圖象于點(diǎn)A,PD⊥y軸于點(diǎn)D,交y=的圖象于點(diǎn)B.下面結(jié)論:
①PA與PB始終相等;②△OBP與△OAP的面積始終相等;
③四邊形PAOB的面積不變;④PABD=PBAC.
其中一定正確的是_____(把你認(rèn)為正確結(jié)論的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,AD=12,經(jīng)過A,D兩點(diǎn)的⊙O與邊BC相切于點(diǎn)E,則⊙O的半徑為( 。
A. 4 B. C. 5 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水庫大壩截面的迎水坡坡比(DE與AE的長(zhǎng)度之比)為1:0.6,背水坡坡比為1:2,大壩高DE=30米,壩頂寬CD=10米,求大壩的截面的周長(zhǎng)和面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,矩形ABCD中,AB=8,BC=6,P是線段BC上一點(diǎn)(P不與B重合),M是DB上一點(diǎn),且BP=DM,設(shè)BP=x,△MBP的面積為y,則y與x之間的函數(shù)關(guān)系式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖所示是隧道的截面由拋物線和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)是12 m,寬是4 m.按照?qǐng)D中所示的直角坐標(biāo)系,拋物線可以用y=x2+bx+c表示,且拋物線上的點(diǎn)C到OB的水平距離為3 m,到地面OA的距離為m.
(1)求拋物線的函數(shù)關(guān)系式,并計(jì)算出拱頂D到地面OA的距離;
(2)一輛貨運(yùn)汽車載一長(zhǎng)方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向車道,那么這輛貨車能否安全通過?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)平面內(nèi),O為原點(diǎn),點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)C的坐標(biāo)為(0,4),直線CM∥x軸(如圖所示).點(diǎn)B與點(diǎn)A關(guān)于原點(diǎn)對(duì)稱,直線y=x+b(b為常數(shù))經(jīng)過點(diǎn)B,且與直線CM相交于點(diǎn)D,連接OD.
(1)求b的值和點(diǎn)D的坐標(biāo);
(2)設(shè)點(diǎn)P在x軸的正半軸上,若△POD是等腰三角形,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,如果以PD為半徑的圓P與圓O外切,求圓O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com