【題目】如圖,任意四邊形ABCD各邊中點分別是E,F,G,H,若對角線AC=BD ,判斷四邊形EFGH的形狀并說明理由。
【答案】菱形,理由見解析
【解析】
由E和F分別為AB與BC的中點,得到EF為三角形ABC的中位線,即EF平行AC且EF=AC,同理得到HG平行于AC,且等于AC的一半,可得出EF與HG平行且相等,利用一組對邊平行且相等的四邊形為平行四邊形得到HEFG為平行四邊形,再由EH等于BD的一半,EF等于AC的一半,且BD=AC,得到鄰邊EH=EF,利用鄰邊相等的平行四邊形為菱形即可得證.
∵E、F分別為AB、BC的中點,
∴EF為△ABC的中位線,
∴EF=AC,EF∥AC,
∵H、G分別為AD、DC的中點,
∴HG為△ADC的中位線,
∴HG=AC,HG∥AC,
∴EF∥HG,EF=HG,
∴四邊形HEFG為平行四邊形,
又E、H分別為AB、AD的中點,
∴EH為△ABD的中位線,
∴EH=BD,
∵AC=BD,
∴EF=EH,
則四邊形HEFG為菱形.
科目:初中數(shù)學 來源: 題型:
【題目】小明在熱氣球A上看到正前方橫跨河流兩岸的大橋BC,并測得B、C兩點的俯角分別為45°、35°.已知大橋BC與地面在同一水平面上,其長度為100m,請求出熱氣球離地面的高度.
(結果保留整數(shù),參考數(shù)據(jù):sin35°≈,cos35°≈,tan35°≈)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是住宅區(qū)內(nèi)的兩幢樓,它們的高AB=CD=30m,兩樓間的距離AC=30m,現(xiàn)需了解甲樓對乙樓的采光的影響情況.
(1)當太陽光與水平線的夾角為30°角時,求甲樓的影子在乙樓上有多高(精確到0.1m,=1.73);
(2)若要甲樓的影子剛好不落在乙樓的墻上,此時太陽與水平線的夾角為多少度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校計劃購買20套足球服和一批足球(足球不少于20個),已知A、B兩家超市相同型號的產(chǎn)品價格相同,足球服每套240元,足球每個80元。A超市的優(yōu)惠政策為:每買一套足球服贈送一個足球;B超市的優(yōu)惠政策為:所有商品一律八折。
(1)設學校計劃購買x(x>20)個足球,用含有x的代數(shù)式分別表示在A、B兩家超市購買所需費用。
(2)若=30,通過計算說明此時按哪種方案購買較為合算?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料并解決有關問題.
我們知道,|x|=.現(xiàn)在我們可以用這一結論來化簡含有絕對值的代數(shù)式,如化簡代數(shù)式|x+1|+|x-2|時,可令x+1=0和x-2=0,分別求得x=-1,x=2(稱-1,2分別為|x+1|與|x-2|的零點值).在實數(shù)范圍內(nèi),零點值x=-1和x=2可將全體實數(shù)分成不重復且不遺漏的如下3種情況:
(1)x<-1;
(2)-1≤x<2;
(3)x≥2.
從而化簡代數(shù)式|x+1|+|x-2|可分以下3種情況:
(1)當x<-1時,原式=-(x+1)-(x-2)=-2x+1;
(2)當-1≤x<2時,原式=x+1-(x-2)=3;
(3)當x≥2時,原式=x+1+x-2=2x-1.
綜上討論,原式=
通過以上閱讀,請你解決以下問題:
(1)分別求出|x+3|和|x-5|的零點值;
(2)化簡|x+3|+|x-5|.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC,BD相交于點O,點E,F(xiàn)在BD上,BE=DF.
(1)求證:AE=CF;
(2)若AB=6,∠COD=60°,求矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將連續(xù)奇數(shù)1,3,5,7,9,……排成如下的數(shù)表:
……………
(1)設中間的數(shù)為a,求這十字框中五個數(shù)之和(請用含字母a的代數(shù)式表示);
(2)將十字框上、下、左、右平移,可框住另外五個數(shù),這五個數(shù)還有這種規(guī)律嗎?
(3)十字框中的五個數(shù)的和能等于2015嗎?若能,請求出這五個數(shù);若不能,說明理由。那么2012呢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場設立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,并規(guī)定:顧客購物10元以上就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會,當轉(zhuǎn)盤停止時,指針落在哪一區(qū)域就可以獲得相應的獎品。下表是活動進行中的一組統(tǒng)計數(shù)據(jù):
(1)計算并完成表格:
轉(zhuǎn)動轉(zhuǎn)盤的次數(shù)n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“鉛筆”的次數(shù)m | 68 | 111 | 136 | 345 | 564 | 701 |
落在“鉛筆”的頻率m/n | 0.68 | 0.74 | △ | 0.69 | 0.705 | △ |
(2)請估計,當n很大時,頻率將會接近多少?
(3)假如你去轉(zhuǎn)動該轉(zhuǎn)盤一次,你獲得鉛筆的概率約是多少?
(4)在該轉(zhuǎn)盤中,表示“鉛筆”區(qū)域的扇形的圓心角約是多少?(精確到1°)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一條小船沿直線向碼頭勻速前進.在0min ,2min,4min,6min時,測得小船與碼頭的距離分別為200m,150m,100m,50m.小船與碼頭的距離是時間的函數(shù)嗎?如果是,寫出函數(shù)的解析式,并畫出函數(shù)圖象.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com