【題目】節(jié)假日期間向、某商場組織游戲,主持人請(qǐng)三位家長分別帶自己的孩于參加游戲,A、B、C分別表示一位家長,他們的孩子分別對(duì)應(yīng)的是ab,若主持人分別從三位家長和三位孩予中各選一人參加游戲.

若已選中家長A,則恰好選中自己孩子的概率是______

請(qǐng)用畫樹狀圖或列表法求出被選中的恰好是同一家庭成員的概率.

【答案】1;(2.

【解析】

1)根據(jù)概率公式直接得出答案即可;

2)先畫出樹狀圖,得出所有等情況數(shù)和恰好是同一家庭成員的情況數(shù),然后根據(jù)概率公式即可得出答案.

解:有三位孩子,分別是a,b,c,

家長A恰好選中自己孩子的概率是

故答案為:

畫樹狀圖如下:

共有9種等情況數(shù),恰好是同一家庭成員的有3種情況數(shù),

被選中的恰好是同一家庭成員的概率是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△OAB的頂點(diǎn)坐標(biāo)分別為O0,0)、A3,2)、B2,0),將這三個(gè)頂點(diǎn)的坐標(biāo)同時(shí)擴(kuò)大到原來的2倍,得到對(duì)應(yīng)點(diǎn)D、E、F

(1)在圖中畫出△DEF

(2)點(diǎn)E是否在直線OA上?為什么?

(3)OAB與△DEF______位似圖形(填“是”或“不是”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在ABC中,以AC為邊在ABC外作等邊ACDBC=,AD=,tanACB=,則線段BD的長為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個(gè)小正方形的邊長為 1 的網(wǎng)格中,點(diǎn) A、B、C 均在格點(diǎn)上,BC 與網(wǎng)格交于點(diǎn) P,(1ABC 的面積等于______;(2)在 AC 邊上有一點(diǎn) Q,當(dāng) PQ 平分ABC 的面積時(shí),請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出 PQ,并簡要說明點(diǎn) Q 的位置是如何找到的(不要求證明)_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的口袋里裝有顏色不同的黑、白兩種顏色的球共4個(gè),某學(xué)習(xí)小組進(jìn)行摸球試驗(yàn),將球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再放回,下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):

摸球的次數(shù)n

100

150

200

500

800

1000

摸到黑球的次數(shù)m

23

33

60

130

202

251

摸到黑球的頻率

當(dāng)n很大時(shí),估計(jì)從袋中摸出一個(gè)黑球的概率是______;

試估算口袋中白球有______個(gè);

的條件下,若從中先換出一球,不放回,搖勻后再摸出一球,請(qǐng)用列表或樹狀圖的方法求兩次都摸到白球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一租賃公司擁有某種型號(hào)的汽車10輛,公司在經(jīng)營中發(fā)現(xiàn)每輛汽車每天的租賃價(jià)為120元時(shí)可全部出租,租賃價(jià)每漲3元就少出租1輛,公司決定采取漲價(jià)措施.

填空:每天租出的汽車數(shù)與每輛汽車的租賃價(jià)之間的關(guān)系式為______

已知租出的汽車每輛每天需要維護(hù)費(fèi)30元,求租出汽車每天的實(shí)際收入與每輛汽車的租賃價(jià)之間的關(guān)系式;租出汽車每天的實(shí)際收入租出收入租出汽車維護(hù)費(fèi)

若未租出的汽車每輛每天需要維護(hù)費(fèi)12元,則每輛汽車每天的租賃價(jià)定為多少元時(shí),才能使公司獲得日收益最大?并求出公司的最大日收益.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)M是邊BC上的一點(diǎn)(不與B、C重合),點(diǎn)NCD邊的延長線上,且滿足∠MAN=90°,聯(lián)結(jié)MN、AC,N與邊AD交于點(diǎn)E.

(1)求證:AM=AN;

(2)如果∠CAD=2NAD,求證:AM2=ACAE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明與同學(xué)們?cè)跀?shù)學(xué)動(dòng)手實(shí)踐操作活動(dòng)中,將銳角為的直角三角板MPN的一個(gè)銳角頂點(diǎn)P與正方形ABCD的頂點(diǎn)A重合,正方形ABCD固定不動(dòng),然后將三角板繞著點(diǎn)A旋轉(zhuǎn),的兩邊分別與正方形的邊BC、DC或其延長線相交于點(diǎn)E、F,連結(jié)EF

(探究發(fā)現(xiàn))

在三角板旋轉(zhuǎn)過程中,當(dāng)的兩邊分別與正方形的邊CB、DC相交時(shí),如圖所示,請(qǐng)直接寫出線段BEDF、EF滿足的數(shù)量關(guān)系:______

(拓展思考)

在三角板旋轉(zhuǎn)過程中,當(dāng)的兩邊分別與正方形的邊CB、DC的延長線相交時(shí),如圖所示,則線段BEDF、EF又將滿足怎樣的數(shù)量關(guān)系:______,并證明你的結(jié)論;

(創(chuàng)新應(yīng)用)

若正方形的邊長為4,在三角板旋轉(zhuǎn)過程中,當(dāng)的一邊恰好經(jīng)過BC邊的中點(diǎn)時(shí),試求線段EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(探索發(fā)現(xiàn))

如圖1,是一張直角三角形紙片,,小明想從中剪出一個(gè)以為內(nèi)角且面積最大的矩形,經(jīng)過多次操作發(fā)現(xiàn),當(dāng)沿著中位線DE、EF剪下時(shí),所得的矩形的面積最大,隨后,他通過證明驗(yàn)證了其正確性,并得出:矩形的最大面積與原三角形面積的比值為______

(拓展應(yīng)用)

如圖2,在中,,BC邊上的高,矩形PQMN的頂點(diǎn)PN分別在邊AB、AC上,頂點(diǎn)Q、M在邊BC上,求出矩形PQMN面積的最大值用含a、h的代數(shù)式表示;

(靈活應(yīng)用)

如圖3,有一塊缺角矩形”ABCDE,,,小明從中剪出了一個(gè)面積最大的矩形為所剪出矩形的內(nèi)角,直接寫出該矩形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案