【題目】一輛慢車與一輛快車分別從甲、乙兩地同時出發(fā),勻速相向而行,兩車在途中相遇后分別按原速同時駛往甲地,兩車之間的距離s(km)與慢車行駛時間t(h)之間的函數(shù)圖象如圖所示,則下列說法中:甲、乙兩地之間的距離為560km;快車速度是慢車速度的1.5倍;快車到達甲地時,慢車距離甲地60km相遇時,快車距甲地320km;正確的是( )

A. ①② B. ①③ C. ①④ D. ①③④

【答案】B

【解析】

根據(jù)函數(shù)圖象直接得出甲乙兩地之間的距離;根據(jù)題意得出慢車往返分別用了4小時,慢車行駛4小時的距離,快車3小時即可行駛完,進而求出快車速度以及利用兩車速度之比得出慢車速度;設慢車速度為3xkm/h,快車速度為4xkm/h,由(3x+4x)×4=560,可得x=20,從而得出快車的速度是80km/h,慢車的速度是60km/h.由題意可得出:快車和慢車相遇地離甲地的距離,當慢車行駛了7小時后,快車已到達甲地,可求出此時兩車之間的距離即可.

由題意可得出:甲乙兩地之間的距離為560千米,故①正確;

由題意可得出:慢車和快車經(jīng)過4個小時后相遇,出發(fā)后兩車之間的距離開始增大直到快車到達甲地后兩車之間的距離開始縮小,由圖分析可知快車經(jīng)過3個小時后到達甲地,此段路程慢車需要行駛4小時,因此慢車和快車的速度之比為3:4,故②錯誤;

∴設慢車速度為3xkm/h,快車速度為4xkm/h,

(3x+4x)×4=560,x=20

∴快車的速度是80km/h,慢車的速度是60km/h.

由題意可得出:快車和慢車相遇地離甲地的距離為4×60=240km,故④錯誤,

當慢車行駛了7小時后,快車已到達甲地,此時兩車之間的距離為240-3×60=60km,故③正確.

故選:B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求證:

(1)△AEF≌△CEB;
(2)AF=2CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把邊長為3的正方形ABCD繞點A順時針旋轉(zhuǎn)45°得到正方形AB′C′D′,邊BC與D′C′交于點O,則四邊形ABOD′的周長是( 。
A.
B.6
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,在平面直角坐標系xOy中,點A、B、C分別為坐標軸上上的三個點,且OA=1,OB=3,OC=4,
(1)求經(jīng)過A、B、C三點的拋物線的解析式;
(2)在平面直角坐標系xOy中是否存在一點P,使得以以點A、B、C、P為頂點的四邊形為菱形?若存在,請求出點P的坐標;若不存在,請說明理由;
(3)若點M為該拋物線上一動點,在(2)的條件下,請求出當|PM﹣AM|的最大值時點M的坐標,并直接寫出|PM﹣AM|的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的邊長為10,圓O分別與AB、AD相切于E、F兩點,且與BG相切于G點.若AO=5,且圓O的半徑為3,則BG的長度為何?( 。
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖1為長方形紙片ABCD,AD=26,AB=22,直線L、M皆為長方形的對稱軸.今將長方形紙片沿著L對折后,再沿著M對折,并將對折后的紙片左上角剪下直角三角形,形成一個五邊形EFGHI,如圖2.最后將圖2的五邊形展開后形成一個八邊形,如圖2,且八邊形的每一邊長恰好均相等.
(1)若圖2中HI長度為x,請以x分別表示剪下的直角三角形的勾長和股長.
(2)請求出圖3中八邊形的一邊長的數(shù)值,并寫出完整的解題過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(1,2),B(3,1),C(-2,-1).

.在圖中作出ABC關于y軸對稱的A1B1C1.

.寫出點A1,B1,C1的坐標(直接寫出答案).

A1 B1 C1 ;

.A1B1C1的面積為 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為了豐富學生的校園體育鍛煉生活,決定根據(jù)學生的興趣愛好采購一批體育用品供學生課后鍛煉使用,因此學校隨機抽取了部分同學就興趣愛好進行調(diào)查,將收集的數(shù)據(jù)整理并繪制成下列兩幅統(tǒng)計圖,請根據(jù)圖中的信息,完成下列問題:

(1)設學校這次調(diào)查共抽取了n名學生,直接寫出n的值;
(2)請你補全條形統(tǒng)計圖;
(3)設該校共有學生1200名,請你估計該校有多少名學生喜歡跳繩?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】20028月在北京召開的國際數(shù)學家大會會標取材于我國古代數(shù)學家趙爽的《勾股圓方圖》,它是由四個全等的直角三角形與中間的小正方形拼成的一個大正方形(如圖所示).如果大正方形的面積是13,小正方形的面積是1,直角三角形的較短直角邊為a,較長直角邊為b,那么(a+b)2的值為_____

查看答案和解析>>

同步練習冊答案