【題目】已知:中,是的角平分線,是的邊上的高,過點(diǎn)做,交直線于點(diǎn).
如圖1,若,則___ ____;
若中的,則__ ____;(用表示)
如圖2,中的結(jié)論還成立嗎?若成立,說明理由;若不成立,請(qǐng)求出.(用表示)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,P(m,n)是拋物線y=-1上任意一點(diǎn),l是過點(diǎn)(0,-2)且與x軸平行的直線,過點(diǎn)P作直線PH⊥l,垂足為H.
【探究】
(1)填空:當(dāng)m=0時(shí),OP= ,PH= ;當(dāng)m=4時(shí),OP= ,PH= ;
【證明】
(2)對(duì)任意m,n,猜想OP與PH的大小關(guān)系,并證明你的猜想.
【應(yīng)用】
(3)如圖2,已知線段AB=6,端點(diǎn)A,B在拋物線y=-1上滑動(dòng),求A,B兩點(diǎn)到直線l的距離之和的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AB=6a,BC=6b,∠D=60°,點(diǎn)E、F、G、H分別在ABCD各邊上,且BE=DG=AE,CF=AH=BF.
(1)求證:四邊形EFGH是平行四邊形;
(2)若四邊形EFGH是菱形,求的值;
(3)四邊形EFGH能為正方形嗎?若能,請(qǐng)直接寫出a、b的值;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠BAD+∠ADC=180°,AE平分∠BAD,CD與AE相交于F,DG交BC的,延長線于G,∠CFE=∠AEB
(1)若∠B=87°,求∠DCG的度數(shù);
(2)AD與BC是什么位置關(guān)系?并說明理由;
(3)若∠DAB=α,∠DGC=β,直接寫出α、β滿足什么數(shù)量關(guān)系時(shí),AE∥DG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在正方形ABCD中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長線上一點(diǎn),N是∠DCP的平分線上一點(diǎn).若∠AMN=90°,求證:AM=MN.
下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAB=∠MAE.
(下面請(qǐng)你完成余下的證明過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點(diǎn),則∠AMN=60°時(shí),結(jié)論AM=MN是否還成立?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:⊙O為△ABC的外接圓,AB=AC,E是AB的中點(diǎn),連OE,OE=,BC=8,則⊙O的半徑為( 。
A. 3 B. C. D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作圖題:在圖(1)(2)所示拋物線中,拋物線與軸交于、,與軸交于,點(diǎn)是拋物線的頂點(diǎn),過平行于軸的直線是它的對(duì)稱軸,點(diǎn)在對(duì)稱軸上運(yùn)動(dòng)。僅用無刻度的直尺畫線的方法,按要求完成下列作圖:
(1)在圖①中作出點(diǎn),使線段最;
(2)在圖②中作出點(diǎn),使線段最大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在數(shù)軸上,點(diǎn)A表示a, 點(diǎn)B表示b, 點(diǎn)C表示c,b是最大的負(fù)整數(shù),且a,c滿足
________,_________,_____________
若將數(shù)軸折疊,使得點(diǎn)與點(diǎn)重合,則點(diǎn)與數(shù)____________表示的點(diǎn)重合;
點(diǎn)開始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)以每秒個(gè)單位長度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)和點(diǎn)分別以每秒個(gè)單位長度和個(gè)單位長度的速度向右運(yùn)動(dòng),假設(shè)秒鐘過后,
①請(qǐng)問:的值是否隨著時(shí)間的變化而改變?若變化,請(qǐng)說明理由;若不變,請(qǐng)求其值.
②探究:若點(diǎn)向右運(yùn)動(dòng),點(diǎn)向左運(yùn)動(dòng),速度保持不變,的值是否隨著時(shí)間的變化而改變?若變化,請(qǐng)說明理由;若不變,請(qǐng)求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形紙片()折疊,使點(diǎn)剛好落在線段上,且折痕分別與邊,相交于點(diǎn),,設(shè)折疊后點(diǎn),的對(duì)應(yīng)點(diǎn)分別為點(diǎn),.
(1)判斷四邊形的形狀,并證明你的結(jié)論;
(2)若,且四邊形的面積,求線段的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com