【題目】如圖1,E為矩形ABCD邊AD上一點(diǎn),點(diǎn)P從點(diǎn)B沿折線BE﹣ED﹣DC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,點(diǎn)Q從點(diǎn)B沿BC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,它們運(yùn)動(dòng)的速度都是1cm/s.若P,Q同時(shí)開始運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),BPQ的面積為y(cm2).已知y與t的函數(shù)圖象如圖2,則下列結(jié)論錯(cuò)誤的是【 】

A.AE=6cm B.

C.當(dāng)0<t≤10時(shí), D.當(dāng)t=12s時(shí),PBQ是等腰三角形

【答案】D。

解析(1)結(jié)論A正確,理由如下:

解析函數(shù)圖象可知,BC=10cm,ED=4cm

故AE=AD﹣ED=BC﹣ED=10﹣4=6cm。

(2)結(jié)論B正確,理由如下:

如圖,連接EC,過點(diǎn)E作EFBC于點(diǎn)F,

由函數(shù)圖象可知,BC=BE=10cm,,

EF=8。

(3)結(jié)論C正確,理由如下:

如圖,過點(diǎn)P作PGBQ于點(diǎn)G,

BQ=BP=t,。

(4)結(jié)論D錯(cuò)誤,理由如下:

當(dāng)t=12s時(shí),點(diǎn)Q與點(diǎn)C重合,點(diǎn)P運(yùn)動(dòng)到ED的中點(diǎn),

設(shè)為N,如圖,連接NB,NC。

此時(shí)AN=8,ND=2,由勾股定理求得:NB=,NC=。

BC=10,

∴△BCN不是等腰三角形,即此時(shí)PBQ不是等腰三角形。

故選D。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著“和諧號(hào)”列車緩緩?fù)?吭诿分菸髡,我市正式進(jìn)入了高鐵時(shí)代.與普通列車相比,“和諧號(hào)”列車時(shí)速更快,安全性更好.已知“梅州西—廣州南”全程大約千米,“和諧號(hào)”次列車平均每小時(shí)比普通列車多行駛千米,其行駛時(shí)間是普通列車行駛時(shí)間的(兩列車中途停留時(shí)間均除外)

1)經(jīng)查詢,“和諧號(hào)”次列車從梅州西到廣州南,中途合計(jì)停站時(shí)間為分鐘,求乘坐“和諧號(hào)”次列車從梅州西到廣州南需要多長(zhǎng)時(shí)間;

2)據(jù)了解,梅州西站后期還會(huì)引進(jìn)更快的“復(fù)興號(hào)”高鐵,屆時(shí)跑完千米的路程最多只需要小時(shí),請(qǐng)問“復(fù)興號(hào)”高鐵的速度每小時(shí)至少比“和諧號(hào)”列車快了多少千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,按以下步驟作圖:①以點(diǎn)A為圓心,以小于AC的長(zhǎng)為半徑作弧,分別交AC,AB于點(diǎn)M,N;②分別以點(diǎn)M,N為圓心,以大于MN的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)O;③連接AP,交BC于點(diǎn)E.若CE3,BE5,則AC的長(zhǎng)為(  )

A. 4B. 5C. 6D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,AD=6,點(diǎn)P是對(duì)角線BD上任意一點(diǎn),連接PA,PC,過點(diǎn)PPEPC交直線AB于點(diǎn)E.

1)求證: PC=PE;

2)延長(zhǎng)AP交直線CD于點(diǎn)F.

①如圖2,若點(diǎn)FCD的中點(diǎn),求△APE的面積;

②若△APE的面積是,則DF的長(zhǎng)為_________;

3)如圖3,點(diǎn)E在邊AB上,連接ECBD于點(diǎn)M,作點(diǎn)E關(guān)于BD的對(duì)稱點(diǎn)Q,連接PQMQ,過點(diǎn)PEC于點(diǎn)N,連接,若,則的面積是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(滿分10分)已知二次函數(shù)y=﹣x2+2x+m

1)如果二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),求m的取值范圍;

2)如圖,二次函數(shù)的圖象過點(diǎn)A3,0),與y軸交于點(diǎn)B,求直線AB與這個(gè)二次函數(shù)的解析式;

3)在直線AB上方的拋物線上有一動(dòng)點(diǎn)D,當(dāng)D與直線AB的距離DE最大時(shí),求點(diǎn)D的坐標(biāo),并求DE最大距離是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,研究發(fā)現(xiàn),科學(xué)使用電腦時(shí),望向熒光屏幕畫面的視線角約為,而當(dāng)手指接觸鍵盤時(shí),肘部形成的手肘角約為.圖是其側(cè)面簡(jiǎn)化示意圖,其中視線水平,且與屏幕垂直.

)若屏幕上下寬,科學(xué)使用電腦時(shí),求眼睛與屏幕的最短距離的長(zhǎng).

)若肩膀到水平地面的距離,上臂,下臂水平放置在鍵盤上,其到地面的距離,請(qǐng)判斷此時(shí)是否符合科學(xué)要求的?

(參考數(shù)據(jù): , , ,所有結(jié)果精確到個(gè)位)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年5月14日15日,“一帶一路”國(guó)際合作高峰壇在北京行,本屆壇期間,中國(guó)同30多個(gè)國(guó)家簽署經(jīng)貿(mào)合作協(xié)議,某廠準(zhǔn)備生產(chǎn)甲、乙兩種商品共8萬(wàn)件銷“一帶一路”沿線國(guó)家和地區(qū),已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入1500元.

(1)甲商品與乙種商品的銷售單價(jià)各多少元?

(2)若甲、乙兩種商品的銷售總收入不低于5400萬(wàn)元,則至少銷售甲種商品多少萬(wàn)件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】水產(chǎn)經(jīng)銷商以10元/千克的價(jià)格收購(gòu)了1000千克的鳊魚圍養(yǎng)在湖塘中(假設(shè)圍養(yǎng)期每條鳊魚的重量保持不變),據(jù)市場(chǎng)推測(cè),經(jīng)過湖塘圍養(yǎng)后的鳊魚的市場(chǎng)價(jià)格每圍養(yǎng)一天能上漲1元/千克,在圍養(yǎng)過程中(最多圍養(yǎng)20天),平均每圍養(yǎng)一天有10千克的鳊魚會(huì)缺氧浮水。假設(shè)對(duì)缺氧浮水的鳊魚能以5元/千克的價(jià)格拋售完.

(1)若圍養(yǎng)x天后,該水產(chǎn)經(jīng)銷商將活著的鳊魚一次性出售,加上拋售的缺氧浮水鳊魚,能獲利8500元,則需要圍養(yǎng)多少天?

(2)若圍養(yǎng)期內(nèi),每圍養(yǎng)一天需支出各種費(fèi)用450元,則該水產(chǎn)經(jīng)銷商最多可獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】文藝復(fù)興時(shí)期,意大利藝術(shù)大師達(dá)芬奇曾研究過圓弧所圍成的許多圖形的面積問題. 如圖所示稱為達(dá)芬奇的貓眼,可看成圓與正方形的各邊均相切,切點(diǎn)分別為,所在圓的圓心為點(diǎn)(或. 若正方形的邊長(zhǎng)為2,則圖中陰影部分的面積為(

A. B. 2C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案