【題目】在中,,,,點(diǎn)為射線上一點(diǎn),當(dāng)為等腰三角形時(shí),的周長(zhǎng)為 _______.
【答案】32或或
【解析】
分三種情況討論:①如圖1,當(dāng)AB=AD=10時(shí),CD=CB=6,得△ABD的周長(zhǎng)為32m;
②如圖2,當(dāng)AB=BD=10時(shí)得CD=4,在Rt△ACD中,AD=,得到△ABD的周長(zhǎng)=;
③如圖3當(dāng)AB為底時(shí).則設(shè)腰AD=BD=x,則CD=x-6,在Rt△ACD中,由勾股定理得x2=(x-6)2+82,解得:x= ,得到△ABD的周長(zhǎng)為m.
解:在Rt△ABC中,AB=,
如圖1,
當(dāng)AB=AD=10時(shí),CD=CB=6,
得△ABD的周長(zhǎng)為10+10+12=32m;
如圖2,
當(dāng)AB=BD=10時(shí),
得CD=4,
在Rt△ACD中,AD=
∴△ABD的周長(zhǎng)=10+10+ ;
如圖3,
當(dāng)AB為底時(shí),設(shè)AD=BD=x,則CD=x-6,
在Rt△ACD中,AD2=CD2+AC2,
即x2=(x-6)2+82,解得:x=,
則△ABD的周長(zhǎng)為++10=m.
故答案為:32或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果關(guān)于x的方程x2-ax+a2-3=0至少有一個(gè)正根,則實(shí)數(shù)a的取值范圍是( 。
A. -2<a<2 B. <a≤2 C. <a≤2 D. ≤a≤2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC的周長(zhǎng)為20.
(1)尺規(guī)作圖,畫出線段AB的垂直平分線(不寫作法,保留作圖痕跡);
(2)設(shè)AB的垂直平分線與BA交于點(diǎn)D,與BC交于點(diǎn)E,若AD=4,求△ACE的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)學(xué)習(xí)三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖1,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)sadA=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.根據(jù)上述角的正對(duì)定義,解答下列問(wèn)題:
(1)sad60°= ;
(2)對(duì)于0°<∠A<180°,∠A的正對(duì)值sadA的取值范圍是 ;
(3)如圖②,已知sinA=,其中∠A為銳角,試求sadA的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】長(zhǎng)方體敞口玻璃罐,長(zhǎng)、寬、高分別為16 cm、6 cm和6 cm,在罐內(nèi)點(diǎn)E處有一小塊餅干碎末,此時(shí)一只螞蟻正好在罐外壁,在長(zhǎng)方形ABCD中心的正上方2 cm處,則螞蟻到達(dá)餅干的最短距離是多少cm.( )
A. 7B.
C. 24D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在等腰Rt△ABC中,∠BAC=90°,點(diǎn)E在AC上(且不與點(diǎn)A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)求證:△AEF是等腰直角三角形;
(2)如圖2,將△CED繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時(shí),連接AE,求證:AF=AE;
(3)如圖3,將△CED繞點(diǎn)C繼續(xù)逆時(shí)針旋轉(zhuǎn),當(dāng)平行四邊形ABFD為菱形,且△CED在△ABC的下方時(shí),若AB=2,CE=2,求線段AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)O是矩形ABCD的中心(對(duì)角線的交點(diǎn)),AB=4cm,AD=6cm.點(diǎn)M是邊AB上的一動(dòng)點(diǎn),過(guò)點(diǎn)O作ON⊥OM,交BC于點(diǎn)N,設(shè)AM=x,ON=y,今天我們將根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),研究函數(shù)值y隨自變量x的變化而變化的規(guī)律.
下面是某同學(xué)做的一部分研究結(jié)果,請(qǐng)你一起參與解答:
(1)自變量x的取值范圍是______;
(2)通過(guò)計(jì)算,得到了x與y的幾組值,如下表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
y/cm | 2.40 | 2.24 | 2.11 | 2.03 | __ | __ | 2.11 | 2.24 | 2.40 |
請(qǐng)你補(bǔ)全表格(說(shuō)明:補(bǔ)全表格時(shí)相關(guān)數(shù)值保留兩位小數(shù),參考數(shù)據(jù):≈3.04,≈6.09)
(3)在如圖2所示的平面直角坐標(biāo)系中,畫出該函數(shù)的大致圖象.
(4)根據(jù)圖象,請(qǐng)寫出該函數(shù)的一條性質(zhì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對(duì)角線AC相交于點(diǎn)F,設(shè)DE=x.
(1)用含x的代數(shù)式表示線段CF的長(zhǎng);
(2)如果把△CAE的周長(zhǎng)記作C△CAE,△BAF的周長(zhǎng)記作C△BAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;
(3)當(dāng)∠ABE的正切值是時(shí),求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)如圖所示是隧道的截面由拋物線和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)是12 m,寬是4 m.按照?qǐng)D中所示的直角坐標(biāo)系,拋物線可以用y=x2+bx+c表示,且拋物線上的點(diǎn)C到OB的水平距離為3 m,到地面OA的距離為m.
(1)求拋物線的函數(shù)關(guān)系式,并計(jì)算出拱頂D到地面OA的距離;
(2)一輛貨運(yùn)汽車載一長(zhǎng)方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向車道,那么這輛貨車能否安全通過(guò)?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過(guò)8m,那么兩排燈的水平距離最小是多少米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com