【題目】如圖,∠MAN=30°,在射線AN上取一點(diǎn)B,使AB=4 cm,過點(diǎn)B作BC⊥AM于點(diǎn)C,點(diǎn)D為邊AB上的動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)A,點(diǎn)B重合),連接CD,過點(diǎn)D作ED⊥CD交直線AC于點(diǎn)E.在點(diǎn)D由點(diǎn)A到點(diǎn)B運(yùn)動(dòng)過程中,設(shè)AD=x cm,AE=y cm.
(1)取指定點(diǎn)作圖,根據(jù)下面表格預(yù)填結(jié)果,先通過作圖確定AD=2 cm時(shí),點(diǎn)E的位置,測(cè)量AE的長(zhǎng)度.
①根據(jù)題意,在答題卡上補(bǔ)全圖形;
②把表格補(bǔ)充完整:通過取點(diǎn)、畫圖、測(cè)量,得到了x與y的幾組對(duì)應(yīng)值,如表:
x/cm | … | 1 | 2 | 3 | … | ||||
y cm | … | 0.4 | 0.8 | 1.0 | m | 1.0 | 0 | 4.0 | … |
則m=______(結(jié)果保留一位小數(shù)).
(2)在下面的平面直角坐標(biāo)系xOy中,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)AE=AD時(shí),AD的長(zhǎng)度約為______cm.
【答案】(1)①見解析;②1.2;(2)見解析;(3)2.4或3.3
【解析】
(1)根據(jù)題意,測(cè)量、作圖即可;
(2)根據(jù)題意,測(cè)量、作圖即可;
(3)滿足AE=AD,可以轉(zhuǎn)化為正比例函數(shù)y=x,求解即可.
(1)①根據(jù)題意,如圖所示:
②根據(jù)題意,測(cè)量得m=1.2
∴故答案為:1.2;
(2)根據(jù)已知數(shù)據(jù),作圖得:
(3)當(dāng)AE=AD時(shí),y=x,在(2)中圖象作圖,并測(cè)量?jī)蓚(gè)函數(shù)圖象交點(diǎn)得:
AD=2.4或3.3
故答案為:2.4或3.3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一透明的敞口正方體容器ABCD﹣A'B'C'D'裝有一些液體,棱AB始終在水平桌面上,液面剛好過棱CD,并與棱BB'交于點(diǎn)Q.此時(shí)液體的形狀為直三棱柱,其三視圖及尺寸見下圖所示請(qǐng)解決下列問題:
(1)CQ與BE的位置關(guān)系是 ,BQ的長(zhǎng)是 dm:
(2)求液體的體積;(提示:直棱柱體積=底面積×高)
(3)若容器底部的傾斜角∠CBE=α,求α的度數(shù).(參考數(shù)據(jù):sin49°=cos41°=,tan37°=)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=mx2﹣4mx+3m(m>0)與x軸的交點(diǎn)為A,B,與y軸的交點(diǎn)為C,D為拋物線的頂點(diǎn).
(1)直接寫出各點(diǎn)坐標(biāo)C( , ),D( , );(用m表示)
(2)試說明無(wú)論m為何值,拋物線一定經(jīng)過兩個(gè)定點(diǎn)并求出這兩個(gè)定點(diǎn)的坐標(biāo);
(3)①將線段AC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到AC′,求點(diǎn)C′的坐標(biāo);
②連接DC',AD,是否存在m,使得△ADC′為等腰三角形?若存在,請(qǐng)求出m;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(已知:如圖所示的一張矩形紙片ABCD(AD>AB),將紙片折疊一次,使點(diǎn)A與點(diǎn)C重合,再展開,折痕EF交AD邊于點(diǎn)E,交BC邊于點(diǎn)F,分別連結(jié)AF和CE.
(1)求證:四邊形AFCE是菱形;
(2)若AE=10cm,△ABF的面積為24cm2,求△ABF的周長(zhǎng);
(3)在線段AC上是否存在一點(diǎn)P,使得2AE2=AC·AP?若存在,請(qǐng)說明點(diǎn)P的位置,并予以證明;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】老師給同學(xué)們布置了一個(gè)“在平面內(nèi)找一點(diǎn),使該點(diǎn)到等腰三角形的三個(gè)頂點(diǎn)的距離相等”的尺規(guī)作圖任務(wù):
下面是小聰同學(xué)設(shè)計(jì)的尺規(guī)作圖過程:
已知:如圖,中,,
求作:一點(diǎn),使得.
作法:
①作的平分線交于點(diǎn);
②作邊的垂直平分線,與相交于點(diǎn);
③連接,
所以,點(diǎn)就是所求作的點(diǎn).
根據(jù)小聰同學(xué)設(shè)計(jì)的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形(保留作圖痕跡)
(2)完成下面的證明.
證明:∵,平分交于點(diǎn),
∴是的垂直平分線;( )(填推理依據(jù))
∴.
∵垂直平分,交于點(diǎn),
∴;( )(填推理依據(jù))
∴.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在大樓AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1: ,高為DE,在斜坡下的點(diǎn)C處測(cè)得樓頂B的仰角為64°,在斜坡上的點(diǎn)D處測(cè)得樓頂B的仰角為45°,其中A、C、E在同一直線上.
(1)求斜坡CD的高度DE;
(2)求大樓AB的高度;(參考數(shù)據(jù):sin64°≈0.9,tan64°≈2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小王、小張和小梅打算各自隨機(jī)選擇本周六的上午或下午去高郵湖的湖上花海去踏青郊游.
(1)小王和小張都在本周六上午去踏青郊游的概率為_______;
(2)求他們?nèi)嗽谕粋(gè)半天去踏青郊游的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為加快網(wǎng)絡(luò)建設(shè),某移動(dòng)通信公司在一個(gè)坡度為2∶1的山腰上建了一座垂直于水平面的信號(hào)通信塔,在距山腳處水平距離39米的點(diǎn)處測(cè)得通信塔底處的仰角是25°,通信塔頂處的仰角是42°.請(qǐng)求出通信塔的大約高度(結(jié)果保留整數(shù),參考數(shù)據(jù):,,,).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸、軸分別交于點(diǎn),,過點(diǎn)作直線軸,點(diǎn)為直線上的一個(gè)動(dòng)點(diǎn),以點(diǎn)為圓心,為半徑作圓,當(dāng)與直線相切時(shí),點(diǎn)的坐標(biāo)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com