如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A、B的坐標(biāo)分別為(8,0)、(0,6).動(dòng)點(diǎn)Q從點(diǎn)O、動(dòng)點(diǎn)P從點(diǎn)A同時(shí)出發(fā),分別沿著OA方向、AB方向均以1個(gè)單位長(zhǎng)度/秒的速度勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t(秒)(0<t≤5).以P為圓心,PA長(zhǎng)為半徑的⊙P與AB、OA的另一個(gè)交點(diǎn)分別為C、D,連接CD、QC.
(1)求當(dāng)t為何值時(shí),點(diǎn)Q與點(diǎn)D重合?
(2)設(shè)△QCD的面積為S,試求S與t之間的函數(shù)關(guān)系式,并求S的最大值;
(3)若⊙P與線段QC只有一個(gè)交點(diǎn),請(qǐng)直接寫出t的取值范圍.
(1) (2)S的最大值為15 (3)0<t≤或<t≤5
【解析】【解析】
(1)∵A(8,0),B(0,6),
∴OA=8,OB=6,
∴AB===10,
∴cos∠BAO==,sin∠BAO==.
∵AC為⊙P的直徑,
∴△ACD為直角三角形.
∴AD=AC•cos∠BAO=2t×=t.
當(dāng)點(diǎn)Q與點(diǎn)D重合時(shí),OQ+AD=OA,
即:t+t=8,
解得:t=.
∴t=(秒)時(shí),點(diǎn)Q與點(diǎn)D重合.
(2)在Rt△ACD中,CD=AC•sin∠BAO=2t×=t.
①當(dāng)0<t≤時(shí),
DQ=OA﹣OQ﹣AD=8﹣t﹣t=8﹣t.
∴S=DQ•CD=(8﹣t)•t=﹣t2+t.
∵﹣=,0<<,
∴當(dāng)t=時(shí),S有最大值為;
②當(dāng)<t≤5時(shí),
DQ=OQ+AD﹣OA=t+t﹣8=t﹣8.
∴S=DQ•CD=(t﹣8)•t=t2﹣t.
∵﹣=,<,所以S隨t的增大而增大,
∴當(dāng)t=5時(shí),S有最大值為15>.
綜上所述,S的最大值為15.
(3)當(dāng)CQ與⊙P相切時(shí),有CQ⊥AB,
∵∠BAO=∠QAC,∠AOB=∠ACQ=90°,
∴△ACQ∽△AOB,
∴=,
即=,
解得t=.
所以,⊙P與線段QC只有一個(gè)交點(diǎn),t的取值范圍為0<t≤或<t≤5.
(1)根據(jù)點(diǎn)A、B的坐標(biāo)求出OA、OB,利用勾股定理列式求出AB,根據(jù)點(diǎn)Q的速度表示出OQ,然后求出AQ,再根據(jù)直徑所對(duì)的圓周角是直角可得∠ADC=90°,再利用∠BAO的余弦表示出AD,然后列出方程求解即可;
(2)利用∠BAO的正弦表示出CD的長(zhǎng),然后分點(diǎn)Q、D重合前與重合后兩種情況表示出QD,再利用三角形的面積公式列式整理,然后根據(jù)二次函數(shù)的最值問(wèn)題解答;
(3)有兩個(gè)時(shí)段內(nèi)⊙P與線段QC只有一個(gè)交點(diǎn):①運(yùn)動(dòng)開始至QC與⊙P相切時(shí)(0<t≤);②重合分離后至運(yùn)動(dòng)結(jié)束(<t≤5).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源:2014中考名師推薦數(shù)學(xué)統(tǒng)計(jì)(解析版) 題型:填空題
市運(yùn)會(huì)舉行射擊比賽,校射擊隊(duì)從甲、乙、丙、丁四人中選拔一人參賽.在選拔賽中,每人射擊10次,計(jì)算他們10發(fā)成績(jī)的平均數(shù)(環(huán))及方差如下表.請(qǐng)你根據(jù)表中數(shù)據(jù)選一人參加比賽,最合適的人選是 .
| 甲 | 乙 | 丙 | 丁 |
平均數(shù) | 8.2 | 8.0 | 8.0 | 8.2 |
方差 | 2.1 | 1.8 | 1.6 | 1.4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014中考名師推薦數(shù)學(xué)尺規(guī)作圖(解析版) 題型:解答題
如圖,已知E是平行四邊形ABCD對(duì)角線AC上的點(diǎn),連接DE.
(1)過(guò)點(diǎn)B在平行四邊形內(nèi)部作射線BF交AC于點(diǎn)F,且使∠CBF=∠ADE(要求:用尺規(guī)作圖,保留作圖痕跡,不寫作法與證明)
(2)連接BE,DF,判斷四邊形BFDE的形狀并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014中考名師推薦數(shù)學(xué)實(shí)數(shù)(解析版) 題型:填空題
把下圖折成正方體后,如果相對(duì)面所對(duì)應(yīng)的值相等,那么x的平方根與y的算術(shù)平方根之積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014中考名師推薦數(shù)學(xué)圓(解析版) 題型:填空題
如圖,⊙O的半徑為4cm,直線l與⊙O相交于A、B兩點(diǎn),AB=cm,P為直線l上一動(dòng)點(diǎn),以1cm為半徑的⊙P與⊙O沒有公共點(diǎn).設(shè)PO=dcm,則d的范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014中考名師推薦數(shù)學(xué)圓(解析版) 題型:選擇題
如圖,已知AB是⊙O的直徑,AD切⊙O于點(diǎn)A,點(diǎn)C是的中點(diǎn),則下列結(jié)論不成立的是( 。
A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014中考名師推薦數(shù)學(xué)圖形的規(guī)律(解析版) 題型:選擇題
在平面直角坐標(biāo)系中,直線l:y=x+1交x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)A1、A2、A3,…在x軸上,點(diǎn)B1、B2、B3,…在直線l上.若△OB1A1,△A1B2A2,△A2B3A3,…均為等邊三角形,則△A5B6A6的周長(zhǎng)是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014中考名師推薦數(shù)學(xué)反比例函數(shù)(解析版) 題型:選擇題
若ab>0,則一次函數(shù)y=ax+b與反比例函數(shù)y= 在同一坐標(biāo)系數(shù)中的大致圖象是( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com