【題目】如圖,在△ABC中,ADBC邊上的高,AE、BF分別是∠BAC,ABC的平分線,∠DAC=20

⑴若∠ABC=60°,求∠EAD的度數(shù);

AEBF相交于點(diǎn)G,求∠AGB的度數(shù)。

【答案】152125°

【解析】

(1)依據(jù)ADBC邊上的高,∠ABC60°,即可得到∠BAD30°,依據(jù)∠DAC20°,可得∠BAC=50°,由AE平分∠BAC,即可得到∠DAE5°.

(2)根據(jù)角平分線的性質(zhì)可得∠GBA+BAG55°,再根據(jù)三角形內(nèi)角和定理求得∠AGB的度數(shù).

解:(1)∵ADBC邊上的高,

∴在中,

∴∠BAD30°,

∵∠DAC20°

∴∠BAC50°,

又∵AE平分∠BAC,

∴∠BAE25°,

∴∠DAE=∠BADBAE= 30°25°,

故答案為:5°.

(2) ADBC邊上的高,

∴在中,

∴∠CBA+BAD90°,

∵∠DAC20°

∴∠CBA+CAB90°+20°=110°

又∵AE、BF分別是∠BAC,ABC的平分線,

∴∠GBA+BAG,

ABG中,

∵∠AGB=180°-(∠ABG+BAG

=180°-55°

=125°

故答案為:125°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】推理填空:已知如圖,DGBCGACBCC,FEABE,∠1=2,請說明CDAB的理由:

:DGBCACBC(已知)

∴∠DGC=ACB=90°(垂直定義

∴∠DGC+ACB=180°

DGAC(_________________________)

∴∠2=DCA(兩直線平行,內(nèi)錯角相等)

∵∠1=2(已知)

∴∠______=_____(等量代換)

EFCD(_____________________)

∴∠AEF=ADC(___________________)

FEAB(已知)

AEF=90°(垂直定義)

∴∠ADC=90°

CDAB(垂直定義)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知分別平分,,則的度數(shù)為(

A. 16°B. 32°C. 48°D. 64°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某花店計劃購進(jìn)一批新的花束以滿足市場需求,三款不同品種的花束,進(jìn)價分別是A180/束,B60/束,C120/束。店鋪在經(jīng)銷中,A款花束可賺20/束,B款花束可賺10/束,C款花束可賺12/束。

1)若商場用6000元同時購進(jìn)兩種不同款式的花束共40部,并恰好將錢用完,請你通過計算分析進(jìn)貨方案;

2)在(1)的條件下,求盈利最多的進(jìn)貨方案;

3)若該店鋪同時購進(jìn)三款花束共20束,共用去1800元,問這次店鋪共有幾種可能的方案?利潤最大是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知函數(shù)的圖象與軸、軸分別交于點(diǎn),與函數(shù)的圖象交于點(diǎn),點(diǎn)的橫坐標(biāo)為2.軸上有一點(diǎn)(其中),過點(diǎn)軸的垂線,分別交函數(shù)的圖象于點(diǎn)

1)求點(diǎn)的坐標(biāo);

2)若四邊形是平行四邊形,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在BC、CD上,且BE=CF,連接BF、DE交于點(diǎn)M,延長ED到H使DH=BM,連接AM,AH,則以下四個結(jié)論:

①△BDF≌△DCE;②∠BMD=120°;③△AMH是等邊三角形;④S四邊形ABCD= AM2

其中正確結(jié)論的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,某社會實(shí)踐活動小組實(shí)地測量兩岸互相平行的一段河的寬度,在河的南岸邊點(diǎn)A處,測得河的北岸邊點(diǎn)B在其北偏東45°方向,然后向西走60m到達(dá)C點(diǎn),測得點(diǎn)B在點(diǎn)C的北偏東60°方向,如圖2.

(1)求∠CBA的度數(shù).
(2)求出這段河的寬(結(jié)果精確到1m,備用數(shù)據(jù) ≈1.41, ≈1.73).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)場擬建一間矩形種牛飼養(yǎng)室,飼養(yǎng)室的一面靠現(xiàn)有墻(墻足夠長),已知計劃中的建筑材料可建圍墻的總長為50m.設(shè)飼養(yǎng)室長為x(m),占地面積為y(m2).

(1)如圖1,問飼養(yǎng)室長x為多少時,占地面積y最大?
(2)如圖2,現(xiàn)要求在圖中所示位置留2m寬的門,且仍使飼養(yǎng)室的占地面積最大,小敏說:“只要飼養(yǎng)室長比(1)中的長多2m就行了.”請你通過計算,判斷小敏的說法是否正確.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小華是同班同學(xué),也是鄰居,某日早晨,小明740先出發(fā)去學(xué)校,走了一段后,在途中停下吃了早餐,后來發(fā)現(xiàn)上學(xué)時間快到了,就跑步到學(xué)校;小華離家后直接乘公共汽車到了學(xué)校.如圖是他們從家到學(xué)校已走的路程s(米)和所用時間t(分鐘)的關(guān)系圖.則下列說法中正確的是( 。.①小明家和學(xué)校距離1200米;②小華乘坐公共汽車的速度是240米/分;③小華乘坐公共汽車后750與小明相遇;④小華的出發(fā)時間不變,當(dāng)小華由乘公共汽車變?yōu)榕懿,且跑步的速度?/span>100米/分時,他們可以同時到達(dá)學(xué)校.

A. ①③④B. ①②③C. ①②④D. ①②③④

查看答案和解析>>

同步練習(xí)冊答案