【題目】在初三綜合素質(zhì)評(píng)定結(jié)束后,為了了解年級(jí)的評(píng)定情況,現(xiàn)對(duì)初三某班的學(xué)生進(jìn)行了評(píng)定等級(jí)的調(diào)查,繪制了如下男女生等級(jí)情況折線統(tǒng)計(jì)圖和全班等級(jí)情況扇形統(tǒng)計(jì)圖.
(1)調(diào)查發(fā)現(xiàn)評(píng)定等級(jí)為合格的男生有2人,女生有1人,則全班共有名學(xué)生.
(2)補(bǔ)全女生等級(jí)評(píng)定的折線統(tǒng)計(jì)圖.
(3)根據(jù)調(diào)查情況,該班班主任從評(píng)定等級(jí)為合格和A的學(xué)生中各選1名學(xué)生進(jìn)行交流,請(qǐng)用樹(shù)形圖或表格求出剛好選中一名男生和一名女生的概率.

【答案】
(1)50
(2)解:根據(jù)題意得:

女生評(píng)級(jí)3A的學(xué)生是:50×16%﹣3=8﹣3=5(人),

女生評(píng)級(jí)4A的學(xué)生是:50×50%﹣10=25﹣10=15(人),

如圖:


(3)解:根據(jù)題意如表:

∵共有12種等可能的結(jié)果數(shù),其中一名男生和一名女生的共有7種,

∴P=

答:選中一名男生和一名女生的概率為:


【解析】解:因?yàn)楹细竦哪猩?人,女生有1人,共計(jì)2+1=3人,

又因?yàn)樵u(píng)級(jí)合格的學(xué)生占6%,

所以全班共有:3÷6%=50(人).

故答案為:50.

(1)根據(jù)合格的男生有2人,女生有1人,得出合格的總?cè)藬?shù),再根據(jù)評(píng)級(jí)合格的學(xué)生占6%,即可得出全班的人數(shù);(2)根據(jù)折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖以及全班的學(xué)生數(shù),即可得出女生評(píng)級(jí)3A的學(xué)生和女生評(píng)級(jí)4A的學(xué)生數(shù),即可補(bǔ)全折線統(tǒng)計(jì)圖;(3)根據(jù)題意畫(huà)出圖表,再根據(jù)概率公式即可得出答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角梯形中,,邊上一點(diǎn),,且.連接交對(duì)角線,連接.下列結(jié)論:

;為等邊三角形;

; .其中結(jié)論正確的是

A.只有①②

B.只有①②④

C.只有③④

D①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BAC=90°,BD⊥DE,CE⊥DE,添加下列條件后仍不能使△ABD≌△CAE的條件是( 。

A. AD=AE B. AB=AC C. BD=AE D. AD=CE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰Rt△ABC中,∠C=90°,AC=8,F(xiàn)是AB邊上的中點(diǎn),點(diǎn)D,E分別在AC,BC邊上運(yùn)動(dòng),且保持AD=CE.連接DE,DF,EF.在此運(yùn)動(dòng)變化的過(guò)程中,下列結(jié)論:

①△DFE是等腰直角三角形;
②四邊形CDFE不可能為正方形,
③DE長(zhǎng)度的最小值為4;
④四邊形CDFE的面積保持不變;
⑤△CDE面積的最大值為8.
其中正確的結(jié)論是( )
A.①②③
B.①④⑤
C.①③④
D.③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O為原點(diǎn),線段AB的兩個(gè)端點(diǎn)A(0,2),B(1,0)分別在y軸和x軸的正半軸上,點(diǎn)C為線段AB的中點(diǎn),現(xiàn)將線段BA繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)90°得到線段BD,連結(jié)CD,某拋物線y=ax2+bx+c(a≠0)經(jīng)過(guò)點(diǎn)D、點(diǎn)E(1,1).

(1)若該拋物線過(guò)原點(diǎn)O,則a=
(2)若點(diǎn)Q在拋物線上,且滿足∠QOB與∠BCD互余,要使得符合條件的Q點(diǎn)的個(gè)數(shù)是4個(gè),則a的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某政府大力扶持大學(xué)生創(chuàng)業(yè).李明在政府的扶持下投資銷(xiāo)售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.物價(jià)部門(mén)規(guī)定,這種護(hù)眼臺(tái)燈的銷(xiāo)售單價(jià)不得高于32元.銷(xiāo)售過(guò)程中發(fā)現(xiàn),月銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):y=﹣10x+n.
(1)當(dāng)銷(xiāo)售單價(jià)x定為25元時(shí),李明每月獲得利潤(rùn)為w為1250元,則n=
(2)如果李明想要每月獲得2000元的利潤(rùn),那么銷(xiāo)售單價(jià)應(yīng)定為多少元?
(3)當(dāng)銷(xiāo)售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?并求最大利潤(rùn)為多少元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 我們定義:如圖1、圖2、圖3,在ABC中,把AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)αα180°)得到AB,把AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)β得到AC,連接BC,當(dāng)α+β180°時(shí),我們稱AB'CABC旋補(bǔ)三角形ABCB'C上的中線AD叫做ABC旋補(bǔ)中線,點(diǎn)A叫做旋補(bǔ)中心.圖1、圖2、圖3中的ABC均是ABC旋補(bǔ)三角形

1)①如圖2,當(dāng)ABC為等邊三角形時(shí),旋補(bǔ)中線ADBC的數(shù)量關(guān)系為:AD   BC

②如圖3,當(dāng)∠BAC90°,BC8時(shí),則旋補(bǔ)中線AD長(zhǎng)為   

2)在圖1中,當(dāng)ABC為任意三角形時(shí),猜想旋補(bǔ)中線ADBC的數(shù)量關(guān)系,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某年級(jí)共有330名男生,為了解該年級(jí)男生1000米跑步成績(jī)(單位:分/秒)的情況,從中隨機(jī)抽取30名男生進(jìn)行測(cè)試,獲得了他們的相關(guān)成績(jī),并對(duì)數(shù)據(jù)進(jìn)行整理、描述和分析.下面給出了部分信息.

a1000米跑步的頻數(shù)分布表如下:

分組

3′17″<x≤3′ 37″

3′37″<x≤3′ 57″

3′ 57″<x≤4′ 17″

4′ 17″<x≤4′ 37″

4′ 37″<x≤4′ 57″

4′ 57″<x≤5′ 17″

頻數(shù)

10

9

m

2

2

1

注:3′37″337

b1000米跑步在3′37″<x≤3′57″這一組是:

3′39 ″  3′42 ″  3′45 ″  3′45″ 3′50 ″  3′52 ″  3′53″ 3′55″ 3′57″

根據(jù)以上信息,回答下列問(wèn)題:

1)表中m的值為

2)根據(jù)表頻數(shù)分布表畫(huà)出相應(yīng)的頻數(shù)分布直方圖.

3)若男生1000米跑步成績(jī)等于或者優(yōu)于3′52″,成績(jī)記為優(yōu)秀.請(qǐng)估計(jì)全年級(jí)男生跑步成績(jī)達(dá)到優(yōu)秀的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】陸老師布置了一道題目:過(guò)直線l外一點(diǎn)Al的垂線.(用尺規(guī)作圖)

小淇同學(xué)作法如下:

1)在直線l上任意取一點(diǎn)C,連接AC;

2)作AC的中點(diǎn)O

3)以O為圓心,OA長(zhǎng)為半徑畫(huà)弧交直線l于點(diǎn)B,如圖所示;

4)作直線AB

則直線AB就是所要作圖形.

你認(rèn)為小淇的作法正確嗎?如果不正確,請(qǐng)畫(huà)出一個(gè)反例;如果正確,請(qǐng)給出證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案