【題目】某工程隊(duì)用甲、乙兩臺隧道挖掘機(jī)從兩個方向挖掘同一條隧道,因?yàn)榈刭|(zhì)條件不同,甲、乙的挖掘速度不同,已知甲、乙同時挖掘天,可以挖米,若甲挖天,乙挖天可以挖掘米.
(1)請問甲、乙挖掘機(jī)每天可以挖掘多少米?
(2)若乙挖掘機(jī)比甲挖掘每小時多挖掘米,甲、乙每天挖掘的時間相同,求甲每小時挖掘多少米?
(3)若隧道的總長為米,甲、乙挖掘機(jī)工作天后,因?yàn)榧淄诰驒C(jī)進(jìn)行設(shè)備更新,乙挖掘機(jī)設(shè)備老化,甲比原來每天多挖米,同時乙比原來少挖米.最終,甲、乙兩臺挖掘機(jī)在相同時間里各完成隧道總長的一半,請用含,的代數(shù)式表示.
【答案】(1)甲每天挖米,乙每天挖米;(2)甲每小時挖米;(3)
【解析】
(1)設(shè)甲、乙每天分別挖x、y米.等量關(guān)系:3(甲+乙)=216米、2×甲+5×乙=270;
(2)設(shè)甲每小時挖n米,則乙每小時挖(n+1)米,關(guān)鍵描述語:甲、乙每天挖掘的時間相同;
(3)由題意可知b天后甲完成30b米,剩余米,乙完成42b米,剩余米,關(guān)鍵描述語:甲、乙兩臺挖掘機(jī)在相同時間里各完成隧道總長的一半.
解:(1)設(shè)甲、乙每天分別挖工,米,
,
解得
甲每天挖米,乙每天挖米.
(2)設(shè)甲每小時挖米,則乙每小時挖米.
,
解得,
經(jīng)檢驗(yàn)是原方程的解,
甲每小時挖米.
(3)由題意可知天后甲完成米,剩余米,乙完成米,剩余米
,
化簡得,
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中.
(1)若點(diǎn)E、F分別在AB、AD上,且AE=DF.試判斷DE與CF的數(shù)量及位置關(guān)系,并說明理由;
(2)若P、Q、M、N是正方形ABCD各邊上的點(diǎn),PQ與MN相交,且PQ=MN,問PQ⊥MN成立嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在我市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計(jì)劃購進(jìn)一批電腦和電子白板,經(jīng)過市場考察得知,購買1臺電腦和2臺電子白板需要3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元.
(1)求每臺電腦、每臺電子白板各多少萬元?
(2)根據(jù)學(xué)校實(shí)際,需購進(jìn)電腦和電子白板共30臺,總費(fèi)用不超過30萬元,但不低于28萬元,該校有幾種購買方案?
(3)上面的哪種方案費(fèi)用最低?按費(fèi)用最低方案購買需要多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過,兩點(diǎn),與x軸交于另一點(diǎn)B.
求此拋物線的解析式;
若拋物線的頂點(diǎn)為M,點(diǎn)P為線段OB上一動點(diǎn)不與點(diǎn)B重合,點(diǎn)Q在線段MB上移動,且,設(shè)線段,,求與x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
在同一平面直角坐標(biāo)系中,兩條直線,分別與拋物線交于點(diǎn)E、G,與中的函數(shù)圖象交于點(diǎn)F、問四邊形EFHG能否成為平行四邊形?若能,求m、n之間的數(shù)量關(guān)系;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,直徑AB=2,CA切⊙O于A,BC交⊙O于D,若∠C=45°,則
(1)BD的長是 ;
(2)求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知在中,BE平分交AC于點(diǎn)E,交AB于點(diǎn)D,,則的度數(shù)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:BD為的直徑,O為圓心,點(diǎn)A為圓上一點(diǎn),過點(diǎn)B作的切線交DA的延長線于點(diǎn)F,點(diǎn)C為上一點(diǎn),且,連接BC交AD于點(diǎn)E,連接AC.
如圖1,求證:;
如圖2,點(diǎn)H為內(nèi)部一點(diǎn),連接OH,CH若時,求證:;
在的條件下,若,的半徑為10,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中.BC=5cm,BP、CP分別是∠ABC和∠ACB的平分線,且PD∥AB,PE∥AC,則△PDE的周長是______cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,,對角線AC平分.
如圖1,若,,探究AD、AB與對角線AC三者之間的數(shù)量關(guān)系,寫出結(jié)論,不必證明.
如圖2若將中的條件“”去掉,中的結(jié)論是否還成立?并證明你的結(jié)論;
如圖3,若,試探究AD、AB與對角線AC三者之間的數(shù)量關(guān)系,寫出結(jié)論,不必證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com