【題目】如圖,在△ABC中,∠BAC=45°,AD⊥BC于點D,BE⊥AC于點E,點F是AB的中點, AD與FE、BE分別交于點G、H,∠CBE=∠BAD.有下列結(jié)論:①FD=FE;② AH=2BD; ③AD·BC=AE·AB; ④2CD2=EH2.其中正確的結(jié)論有( )
A. 1個 B. 2個 C. 3個 D. 4個
【答案】D
【解析】分析:由直角三角形斜邊上的中線性質(zhì)得出FD=AB,證明△ABE是等腰直角三角形,得出AE=BE,證出FE=AB,延長FD=FE,①正確;
證出∠ABC=∠C,得出AB=AC,由等腰三角形的性質(zhì)得出BC=2CD,∠BAD=∠CAD=∠CBE,由ASA證明△AEH≌△BEC,得出AH=BC=2CD=2BD,②正確;
證明△ABD~△BCE,得出=,即BCAD=ABBE,③正確;
△ABE是等腰直角三角形,得到AB=AC=AE,從而有EC=(-1)AE,
變形得AE= ( )EH,變形得=,由=,變形即可得到④正確;即可得出結(jié)論.
詳解:∵在△ABC中,AD和BE是高,∴∠ADB=∠AEB=∠CEB=90°.
∵點F是AB的中點,∴FD=AB.
∵∠BAC=45°,∴∠ABE=45°,∴△ABE是等腰直角三角形,∴AE=BE.
∵點F是AB的中點,∴FE=AB,∴FD=FE,①正確;
∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,∴∠ABC=∠C,∴AB=AC.
∵AD⊥BC,∴BC=2CD,∠BAD=∠CAD=∠CBE.在△AEH和△BEC中,,∴△AEH≌△BEC(ASA),∴AHBC=2CD=2BD,②正確;
∵∠BAD=∠CBE,∠ADB=∠CEB,∴△ABD~△BCE,∴=,即BCAD=ABBE.故③正確;
∵△ABE是等腰直角三角形,∴AB=AE,∴AC=AE,∴EC=(-1)AE,
∴AE=EH=( )EH,=,∴=,∴=,∴=,∴=,∴2CD2=EH2,故④正確.
故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D、E、F分別是邊AB、AC、BC的中點,要判定四邊形DBFE是菱形,下列所添加條件不正確的是( )
A. AB=AC B. AB=BC C. BE平分∠ABC D. EF=CF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的口袋里裝有只有顏色不同的黑、白兩種顏色的球共20只,某學(xué)習(xí)小組做摸球?qū)嶒,將球攪勻后從中隨機摸出一個球記下顏色,再把它放回袋中,不斷重復(fù).下表是活動進行中的一組統(tǒng)計數(shù)據(jù):
摸球的次數(shù)n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次數(shù)m | 59 | 96 | 116 | 290 | 480 | 601 |
摸到白球的頻率 |
| 0.64 | 0.58 |
| 0.60 | 0.601 |
(1)完成上表;
(2)“摸到白球”的概率的估計值是 (精確到0.1);
(3)試估算口袋中黑、白兩種顏色的球各有多少只?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A,B,C,E,F是數(shù)軸上的點.回答下列問題:
(1)A,C兩點間的距離是多少?
(2)若點E與點B的距離是2,則E點表示的數(shù)是什么?
(3)F點與A點的距離是m(m>0),F點表示的數(shù)是多少?(用含字母m的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=- (x-2)2+7,當(dāng)m≤x≤n且mn<0時,y的最小值為2m,最大值為2n,則m+n的值為( )
A. 2 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AOBC的頂點O(0,0),A(﹣1,2),點B在x軸正半軸上按以下步驟作圖:①以點O為圓心,適當(dāng)長度為半徑作弧,分別交邊OA,OB于點D,E;②分別以點D,E為圓心,大于DE的長為半徑作弧,兩弧在∠AOB內(nèi)交于點F;③作射線OF,交邊AC于點G,則點G的坐標(biāo)為( )
A. (﹣1,2) B. (,2) C. (3﹣,2) D. (﹣2,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某學(xué)校一教學(xué)樓高AB=15米,在它的正前方有一旗桿EF,從教學(xué)樓頂端A測得旗桿頂端E的俯角為30°,旗桿低端F到大樓前梯坎底邊的距離CF=12米,梯坎坡長BC=6.5米,梯坎坡度i=1:2.4,求旗桿EF的高度.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某旗縣開展2018美麗鄉(xiāng)村美化綠化活動,小康村計劃購買垂柳和丁香兩種花木共100棵綠化村里的小廣場,其中垂柳每棵50元,丁香每棵100元.
(1)若購進垂柳,丁香兩種花木剛好用去8000元,則購買了垂柳,丁香兩種花木各多少棵?
(2)如果購買丁香的數(shù)量不少于垂柳的數(shù)量,請你設(shè)計一種購買方案,使所需總費用最低,并求出該購買方案所需總費用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△AOB中,將扇形COD按圖1擺放,使扇形的半徑OC、OD分別與OA、OB重合,OA=OB=2,OC=OD=1,固定等邊△AOB不動,讓扇形COD繞點O逆時針旋轉(zhuǎn),線段AC、BD也隨之變化,設(shè)旋轉(zhuǎn)角為α.(0<α≤360°)
(1)當(dāng)OC∥AB時,旋轉(zhuǎn)角α= 度;
發(fā)現(xiàn):(2)線段AC與BD有何數(shù)量關(guān)系,請僅就圖2給出證明.
應(yīng)用:(3)當(dāng)A、C、D三點共線時,求BD的長.
拓展:(4)P是線段AB上任意一點,在扇形COD的旋轉(zhuǎn)過程中,請直接寫出線段PC的最大值與最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com