【題目】如圖,在平面直角坐標系中,△ABC的頂點在坐標軸上,A,BC三點的坐標分別為 (0,2),(10),(0,-05)D為線段AB-個動點(不與點A,B重合),過B,D,0三點的圓與直線BC交于點E,當△OED面積取得最小值時,ED的長為________

【答案】1

【解析】

如圖,先證明AOB∽△BOC得到∠1=2,再判斷∠DBE=90°,利用圓周角定理可得到DE為過B,D,O三點的圓的直徑,從而得到∠DOE=90°,接著證明AOD∽△BOE,利用相似比得到OD=2OE,根據(jù)三角形面積公式得到SODE=OE2,利用垂線段最短判斷當OED面積取得最小值時,OECB,然后計算OE、OD,最后利用勾股定理計算對應的DE長.

如圖,

A,B,C三點的坐標分別為(0,2),(10),(0,-0.5),
OA=2,OB=1,OC=

=2,

而∠AOB=BOC,

∴△AOB∽△BOC

∴∠1=2,

∴∠ABC=2+5=1+5=90°

∵∠DBE=90°,

DE為過B,D,O三點的圓的直徑,

∴∠DOE=90°,

∵∠3+BOD=4+BOD=90°

∴∠3=4,

∵∠1=2,

∴△AOD∽△BOE

,即OD=2OE

SODE=ODOE=2OEOE=OE2

OED面積取得最小值時,OE最小,此時OECB,

BC=,

OE==

此時OD=2OE=,

DE=,

即當OED面積取得最小值時,ED的長為1
故答案為1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】比較A組、B組中兩組數(shù)據(jù)的平均數(shù)及方差,一下說法正確的是(

A.A組,B組平均數(shù)及方差分別相等B.A組,B組平均數(shù)相等,B組方差大

C.A組比B組的平均數(shù)、方差都大D.A組,B組平均數(shù)相等,A組方差大

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】打折前,買20A商品和30B商品要用2200元,買50A商品和10B商品要用2900元.若打折后,買40A商品和40B商品用了3240元,比不打折少花多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點Bx軸上,∠ABO90°,ABBO,直線y=﹣3x4與反比例函數(shù)y交于點A,交y軸于C點.

1)求k的值;

2)點D與點O關于AB對稱,連接AD、CD,證明△ACD是直角三角形;

3)在(2)的條件下,點E在反比例函數(shù)圖象上,若SOCESOCD,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC,點P是平面內(nèi)的任意一點(A、B、C三點除外),若點P與點A、BC中任意兩點的連線的夾角為直角時,則稱點PABC的一個勾股點.

1)如圖1,若點PABC內(nèi)一點,∠A50°,∠ACP10°,∠ABP30°,試說明點PABC的一個勾股點.

2)如圖2RtABC中,∠ACB90°,AC6BC8,點DAB的中點,點P在射線CD上,若點PABC的勾股點,則CP   

3)如圖3,四邊形ABDC中,DBDA,∠BCD45°,AC,CD3.則點D能否是ABC的勾股點,若能,求出BC的長:若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=-2x+2x軸交于點B,與y軸交于點A,拋物線y=-x2+bx+c與線段AB交于點E,并經(jīng)過原點O,且點E的橫坐標為

(1)求拋物線的表達式;

(2)在拋物線上是否存在點C,使得以AC為直徑的圓恰好經(jīng)過點B,若存在,求出所有滿足條件的點C的坐標,若不存在,請說明理由;

(3)D是第(2)小題中圓上的動點,直線y=x+m經(jīng)過點D,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC是等邊三角形,ADBC于點D,點E是直線AD上的動點,將BE繞點B順時針方向旋轉(zhuǎn)60°得到BF,連接EF、CF、AF

1)如圖1,當點E在線段AD上時,猜想∠AFC和∠FAC的數(shù)量關系;(直接寫出結(jié)果)

2)如圖2,當點E在線段AD的延長線上時,(1)中的結(jié)論還成立嗎?若成立,請證明你的結(jié)論,若不成立,請寫出你的結(jié)論,并證明你的結(jié)論;

3)點E在直線AD上運動,當ACF是等腰直角三角形時,請直接寫出∠EBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCDABBCCDAD,∠BAD90°,對角線AC、BD相交于點O

1)求證:四邊形ABCD是正方形;

2)若P是對角線BD上任意一點,連接PAPA繞點P逆時針旋轉(zhuǎn)90°得到PE,連接AEBE

①根據(jù)題意畫圖,判斷B、CE三點是否共線,并說明理由;

②當BD8,△PBE的面積等于時,求PB的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一對骰子,如果擲兩骰子正面點數(shù)和為2、11、12,那么甲贏;如果兩骰子正面的點數(shù)和為7,那么乙贏;如果兩骰子正面的點數(shù)和為其他數(shù),那么甲、乙都不贏.繼續(xù)下去,直到有一個人贏為止.

1)你認為游戲是否公平?并解釋原因;

2)如果你認為游戲公平,那么請你設計一個不公平的游戲;如果你認為游戲不公平,那么請你設計一個公平的游戲.

查看答案和解析>>

同步練習冊答案