【題目】如圖所示,在△ABC 中,∠ABC和∠ACB的平分線交于點O,過點O作EF∥BC,交AB于點E,交AC于點F.
(1)若∠ABC=40°,∠ACB=60°,求∠BOE+∠COF的度數;
(2)若△AEF的周長為8 cm,且BC=4 cm,求△ABC的周長.
【答案】(1)∠BOE+∠COF=50°;(2)12cm.
【解析】
(1)兩直線平行,內錯角相等,以及根據角平分線性質,可得到 從而求得∠BOE+∠COF的度數.
(2)根據,可得△FOC、△EOB均為等腰三角形,由此把△AEF的周長轉化為AC+AB,進而可得到△ABC的周長.
解:(1)∵EF∥BC,
∴∠OCB=∠COF,∠OBC=∠BOE.
又∵BO,CO分別是∠BAC和∠ACB的角平分線,
∴∠COF=∠FCO=∠ACB=30°,∠BOE=∠OBE=∠ABC=20°.
∴∠BOE+∠COF=50°.
(2)∵∠COF=∠FCO,∴OF=CF.
∵∠BOE=∠OBE,∴OE=BE.
∴△AEF的周長=AF+OF+OE+AE=AF+CF+BE+AE=AB+AC=8 cm.
∴△ABC的周長=8+4=12(cm).
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).
①若△ABC經過平移后得到△A1B1C1 , 已知點C1的坐標為(4,0),寫出頂點A1 , B1的坐標;
②若△ABC和△A2B2C2關于原點O成中心對稱圖形,寫出△A2B2C2的各頂點的坐標;
③將△ABC繞著點O按順時針方向旋轉90°得到△A3B3C3 , 寫出△A3B3C3的各頂點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,長方形的各邊分別平行于 軸或 軸,物體甲和物體乙分別由點 同時出發(fā),沿長方形 的邊作環(huán)繞運動.物體甲按逆時針方向以2個單位/秒勻速運動,物體乙按順時針方向以4個單位/秒勻速運動,則兩個物體運動后的第2020次相遇地點的坐標是____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC繞點C順時針旋轉得△A1B1C,當A1落在AB邊上時,連接B1B,取BB1的中點D,連接A1D,則A1D的長度是( )
A.
B.2
C.3
D.2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖是用4個全等的長方形拼成的一個“回形”正方形,圖中陰影部分面積用2種方法表示可得一個等式,這個等式為_______.
(2)若(4x﹣y)2=9,(4x+y)2=169,求xy的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,BC=8,D是線段BC上的動點(不含端點B、C).若線段AD長為正整數,則點D的個數共有( )
A.5個
B.4個
C.3個
D.2個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,(1)∠BED與∠CBE是直線________,________被直線________所截形成的________角;
(2)∠A與∠CED是直線________,________被直線________所截形成的________角;
(3)∠CBE與∠BEC是直線________,________被直線________所截形成的________角;
(4)∠AEB與∠CBE是直線________,________被直線________所截形成的________角.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,△ABC三個頂點的坐標分別為A(﹣2,﹣1),B(﹣4,1),C(﹣3,3).△ABC關于原點O對稱的圖形是△A1B1C1 .
(1)畫出△A1B1C1;
(2)BC與B1C1的位置關系是 , AA1的長為;
(3)若點P(a,b)是△ABC 一邊上的任意一點,則點P經過上述變換后的對應點P1的坐標可表示為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】探索:小明在研究數學問題:已知AB∥CD,AB和CD都不經過點P,探索∠P與∠C的數量關系.
發(fā)現:在如圖中,:∠APC=∠A+∠C;如圖
小明是這樣證明的:過點P作PQ∥AB
∴∠APQ=∠A(_ __)
∵PQ∥AB,AB∥CD.
∴PQ∥CD(__ _)
∴∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
(1)為小明的證明填上推理的依據;
(2)應用:①在如圖中,∠P與∠A、∠C的數量關系為__ _;
②在如圖中,若∠A=30 ,∠C=70 ,則∠P的度數為__ _;
(3)拓展:在如圖中,探究∠P與∠A,∠C的數量關系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com