如圖,已知直線l1∥l2,直線l3和直線l1、l2交于點(diǎn)C和D,在C、D之間有一點(diǎn)P.
(1)問(wèn)∠PAC,∠APB,∠PBD之間有什么關(guān)系,并說(shuō)明理由.
(2)如果P點(diǎn)在C、D之間運(yùn)動(dòng)時(shí),問(wèn)∠PAC,∠APB,∠PBD之間的關(guān)系是否發(fā)生變化.
(3)若點(diǎn)P在C、D兩點(diǎn)的外側(cè)運(yùn)動(dòng)時(shí)(P點(diǎn)與點(diǎn)C、D不重合),試探索∠PAC,∠APB,∠PBD之間的關(guān)系又是如何?
考點(diǎn):平行線的性質(zhì)
專題:
分析:(1)首先過(guò)點(diǎn)P作PE∥l1,由l1∥l2,可得PE∥l2∥l1,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等,即可求得:∠APB=∠PAC+∠PBD.
(2)當(dāng)P點(diǎn)在C、D之間運(yùn)動(dòng)時(shí),∠APB=∠PAC+∠PBD,證法與(1)相同;
(3)當(dāng)點(diǎn)P在C、D兩點(diǎn)的外側(cè)運(yùn)動(dòng)時(shí),由直線l1∥l2,根據(jù)兩直線平行,同位角相等與三角形外角的性質(zhì),即可求得:∠PBD=∠PAC+∠APB.
解答:解:(1)∠APB=∠PAC+∠PBD.
理由如下:
過(guò)點(diǎn)P作PE∥l1,
∵l1∥l2,
∴PE∥l2∥l1
∴∠PAC=∠1,∠PBD=∠2,
∴∠APB=∠1+∠2=∠PAC+∠PBD;

(2)當(dāng)P點(diǎn)在C、D之間運(yùn)動(dòng)時(shí),∠APB=∠PAC+∠PBD;

(3)如圖②,當(dāng)點(diǎn)P在C、D兩點(diǎn)的外側(cè)運(yùn)動(dòng),且在l1上方時(shí),∠PBD=∠PAC+∠APB.
理由如下:
∵l1∥l2
∴∠PEC=∠PBD,
∵∠PEC=∠PAC+∠APB,
∴∠PBD=∠PAC+∠APB.
如圖③,當(dāng)點(diǎn)P在C、D兩點(diǎn)的外側(cè)運(yùn)動(dòng),且在l2下方時(shí),∠PAC=∠PBD+∠APB.
理由如下:
∵l1∥l2,
∴∠PED=∠PAC,
∵∠PED=∠PBD+∠APB,
∴∠PAC=∠PBD+∠APB.
點(diǎn)評(píng):本題主要考查平行線的性質(zhì)與三角形外角的性質(zhì).關(guān)鍵是掌握:兩直線平行,內(nèi)錯(cuò)角相等與兩直線平行,同位角相等,注意輔助線的作法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,矩形ABCD的兩條對(duì)角線相交于點(diǎn)O,∠AOD=120°,AB=2,則矩形的對(duì)角線AC的長(zhǎng)是(  )
A、2
B、4
C、2
3
D、4
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在梯形ABCD中,AD∥BC,對(duì)角線AC⊥BD,且AC=12,BD=5,則該梯形的面積是( 。
A、30
B、15
C、
15
2
D、60

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,AB=AC,AD⊥BC于點(diǎn)D,DE⊥AC于點(diǎn)E,M為DE中點(diǎn),AM與BE相交于點(diǎn)N,AD與BE相交于點(diǎn)F.求證:
(1)
DE
CE
=
AD
CD
;
(2)△BCM∽△ADM;
(3)AM⊥BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

甲乙兩地相距20千米,A從甲地向乙地方向前進(jìn),同時(shí)B從乙地向甲地方向前進(jìn),兩小時(shí)后二人在途中相遇,相遇后A就返回甲地,B仍向甲地前進(jìn),A回到甲地時(shí),B離甲地還有2千米,求A、B二人的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

因式分解:
(1)4xy2-4x2y-y3;
(2)2m2nt2-12m2nt+18m2n;
(3)3ax2-15ax+12a.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,在△ABC中,CA=CB,∠C=90°,D為AB上任意一點(diǎn),AE⊥CD,垂足為E,BF⊥CD,垂足為F,求證:EF=|AE-BF|.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知x2-5xy+6y2=0,求
x-y
x+y
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,邊AC在直線l上,點(diǎn)F是直線l上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)B的⊙O與直線l相切于點(diǎn)F.設(shè)CF=x,⊙O的半徑為y.
(1)用x的代數(shù)式表示y;
(2)點(diǎn)F在運(yùn)動(dòng)的過(guò)程中,是否存在這樣的x,使⊙O與△ABC的兩邊所在直線同時(shí)相切?若存在,求出x的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案