【題目】如圖,已知直角三角形的直角邊軸上,雙曲線與直角邊交于點,與斜邊交于點,則的面積為________

【答案】4

【解析】

作DE⊥OA于E點,易得DE∥AB,根據(jù)三角形相似的判定得到Rt△OED∽Rt△OAB,則DE:AB=OE:OA=OD:OB,而OD=OB,即OB=3OD,可得到AB=3DE,OA=3OE,設D點坐標為(a,),則B點坐標為(3a,),可分別得到A點坐標為(3a,0),C點坐標為(3a,),然后利用S△OBCOABC進行計算即可.

作DE⊥OA于E點,如圖,

∵∠OAB=90°,

∴DE∥AB,

∴Rt△OED∽Rt△OAB,

∴DE:AB=OE:OA=OD:OB,

而OD=OB,即OB=3OD,

∴AB=3DE,OA=3OE,

設D點坐標為(a,),則B點坐標為(3a,),

∴A點坐標為(3a,0),C點的橫坐標為3a,

而C點在y=的圖象上,

把x=3a代入y=得y=,

∴C點坐標為(3a,),

∴S△OBCOABC=3a()=4.

故答案為:4.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在長方形中,,點在線段上以的速度由向終點運動,同時,點在線段上由點向終點運動,它們運動的時間為.

(解決問題)

若點的運動速度與點的運動速度相等,當時,回答下面的問題:

(1)

(2)此時是否全等,請說明理由;

(3)求證:;

(變式探究)

若點的運動速度為,是否存在實數(shù),使得全等?若存在,請直接寫出相應的的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的直徑AB=12cm,AMBN是它的兩條切線,DE與⊙O相切于點E,并與AM,BN分別相交于D,C兩點.

(1)若∠ADC=122°,求∠BCD的度數(shù);

(2)設AD=x,BC=y,求y關于x的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,以為一邊向上作等邊三角形,點垂直平分線上,且,連接,.

1)判斷的形狀,并說明理由;

2)求證:;

3)填空:

①若,相交于點,則的度數(shù)為______.

②在射線上有一動點,若為等腰三角形,則的度數(shù)為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某初級中學數(shù)學興趣小組為了了解本校學生的年齡情況,隨機調(diào)查了該校部分學生的年齡,整理數(shù)據(jù)并繪制如下不完整的統(tǒng)計圖.

依據(jù)以上信息解答以下問題:

(1)求樣本容量;

(2)直接寫出樣本容量的平均數(shù),眾數(shù)和中位數(shù);

(3)若該校一共有1800名學生,估計該校年齡在15歲及以上的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】制作一種產(chǎn)品,需先將材料加熱達到60 ℃后,再進行操作.設該材料溫度為y),從加熱開始計算的時間為xmin).據(jù)了解,當該材料加熱時,溫度y與時間x成一次函數(shù)關系;停止加熱進行操作時,溫度y與時間x成反比例關系(如圖).已知該材料在操作加熱前的溫度為15 ℃,加熱5分鐘后溫度達到60 ℃

1)分別求出將材料加熱和停止加熱進行操作時,yx的函數(shù)關系式;

2)根據(jù)工藝要求,當材料的溫度低于15 ℃時,須停止操作,那么從開始加熱到停止操作,共經(jīng)歷了多少時間?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:到三角形兩邊距離相等的點叫做三角形的準內(nèi)心.已知在中,,,,點的準內(nèi)心(不包括頂點),且點的某條邊上,則的長為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為預防疾病,某校對教室進行藥熏消毒.已知藥物燃燒階段,室內(nèi)每立方米空氣中的含藥量mg)與燃燒時間(分鐘)成正比例;燃燒后, 成反比例(如圖所示).現(xiàn)測得藥物10分鐘燃完,此時教室內(nèi)每立方米空氣含藥量為8mg.據(jù)以上信息解答下列問題:

1求藥物燃燒時的函數(shù)關系式.(2求藥物燃燒后的函數(shù)關系式.

3)當每立方米空氣中含藥量低于1.6mg時,對人體方能無毒害作用,那么從消毒開始,經(jīng)多長時間學生才可以回教室?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象交軸于點和點,交軸于點

求這個二次函數(shù)的表達式;

若點在第二象限內(nèi)的拋物線上,求面積的最大值和此時點的坐標;

在平面直角坐標系內(nèi),是否存在點,使,,,四點構(gòu)成平行四邊形?若存在,直接寫出點的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案