解下列不等式(組)
(1)3(x+1)<4(x-2)-3;
(2)
3(x+2)<x+8
x
2
x-1
3
考點(diǎn):解一元一次不等式組,解一元一次不等式
專題:
分析:(1)首先去括號,然后移項(xiàng)、合并同類項(xiàng),系數(shù)化成1即可求解;
(2)先求出不等式組中每一個(gè)不等式的解集,再求出它們的公共部分,就是不等式組的解集.
解答:解:(1)去括號,得:3x+3<4x-8-3,
移項(xiàng),得:3x-4x<-8-3-3,
合并同類項(xiàng),得:-x<-14,
系數(shù)化成1得:x>14;
(2)
3(x+2)<x+8…①
x
2
x-1
3
…②
,
解①得:x<1,
解②得:x≤-2,
則不等式組的解集是:x≤-2.
點(diǎn)評:本題考查的是一元一次不等式組的解,解此類題目常常要結(jié)合數(shù)軸來判斷.還可以觀察不等式的解,若x>較小的數(shù)、<較大的數(shù),那么解集為x介于兩數(shù)之間.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知一個(gè)正比例函數(shù)和一個(gè)一次函數(shù)的圖象相交于點(diǎn)A(1,4),且一次函數(shù)的圖象與x軸交于點(diǎn)B(3,0),求這兩個(gè)函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次方程x2-2
2
x+m=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求實(shí)數(shù)m的最大整數(shù)值;
(2)在(1)的條下,方程的實(shí)數(shù)根是x1,x2,求代數(shù)式x12+x22-x1x2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知CD為⊙O的直徑,弦AB⊥CD,垂足為E,連接AD、AC,點(diǎn)F在DC延長線上,連接AF,且∠FAC=∠CAB.
(1)求證:AF為⊙O的切線;
(2)若AD=10,sin∠FAC=
2
5
,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在平面直角坐標(biāo)系中,已知A(-
3
,0),B(0,2).以O(shè)A、OB為邊作矩形AOBC,再以C為圓心,CA為半徑作⊙C交y軸于E、F兩點(diǎn).
(1)直接寫出點(diǎn)C的坐標(biāo);
(2)求線段EF的長;
(3)如圖2,以AB為邊向下作等邊三角形ABM.
①求點(diǎn)M的坐標(biāo);
②若以M為圓心,R為半徑的⊙M上有且只有一個(gè)點(diǎn)到點(diǎn)C的距離等于2,請直接寫出R的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在邊長為6
2
的正方形ABCD中,E是AB邊上一點(diǎn),G是AD延長線上一點(diǎn),BE=DG,連接EG,CF⊥EG交EG于點(diǎn)H,交AD于點(diǎn)F,連接CE,BH.若BH=8,則FG=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

鐵路部門規(guī)定旅客免費(fèi)攜帶行李箱的長、寬、高之和不超過160cm,某廠家生產(chǎn)符合該規(guī)定的行李箱,已知行李箱的高為30cm,長與寬的比為3:2,則該行李箱的長的最大值為
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

四邊形ABCD中,對角線AC、BD相交于點(diǎn)O,給出下列四個(gè)條件:
①AD∥BC;②AD=BC;③OA=OC;④OB=OD
從中任選兩個(gè)條件,能使四邊形ABCD為平行四邊形的選法有
 
種.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,有一矩形紙片ABCD,AB=8,AD=17,將此矩形紙片折疊,使頂點(diǎn)A落在BC邊的A′處,折痕所在直線同時(shí)經(jīng)過邊AB、AD(包括端點(diǎn)),設(shè)BA′=x,則x的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案