輪船從B處以每小時(shí)50海里的速度沿南偏東30°方向勻速航行,在B處觀測(cè)燈塔A位于南偏東75°方向上,輪船航行半小時(shí)到達(dá)C處,在觀測(cè)燈塔A北偏東60°方向上,則C處與燈塔A的距離是__________海里.
25海里.
【考點(diǎn)】解直角三角形的應(yīng)用-方向角問(wèn)題.
【分析】根據(jù)題中所給信息,求出∠BCA=90°,再求出∠CBA=45°,從而得到△ABC為等腰直角三角形,然后根據(jù)解直角三角形的知識(shí)解答.
【解答】解:根據(jù)題意,得∠1=∠2=30°,
∵∠ACD=60°,
∴∠ACB=30°+60°=90°,
∴∠CBA=75°﹣30°=45°,
∴△ABC為等腰直角三角形,
∵BC=50×0.5=25,
∴AC=BC=25(海里).
故答案為:25.
【點(diǎn)評(píng)】本題考查了等腰直角三角形和方位角,根據(jù)方位角求出三角形各角的度數(shù)是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
(1)如圖,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D在BC上,且BD=BA,點(diǎn)E在BC的延長(zhǎng)線上且CE=CA,試求∠DAE的度數(shù);
(2)如果把第(1)題中“∠BAC=90°”的條件改為“∠BAC>90°”,其余條件不變,那么∠DAE與∠BAC有怎樣的數(shù)量關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖:△ABC中,DE是AC的垂直平分線,AE=3cm,△ABD的周長(zhǎng)為13cm,則△ABC的周長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
三角形一個(gè)外角小于與它相鄰的內(nèi)角,這個(gè)三角形( )
A.是直角三角形 B.是銳角三角形
C.是鈍角三角形 D.屬于哪一類不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在等邊△ABC中,點(diǎn)D,E分別在邊BC,AC上,且DE∥AB,過(guò)點(diǎn)E作EF⊥DE,交BC的延長(zhǎng)線于點(diǎn)F,
(1)求∠F的度數(shù);
(2)若CD=3,求DF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
根據(jù)下列已知條件,能唯一畫出△ABC的是( )
A.AB=3,BC=4,AC=8 B.AB=4,BC=3,∠A=30°
C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,下列條件中,不能證明△ABC≌△DCB的是( )
A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCB
C.BO=CO,∠A=∠D D.AB=DC,∠DBC=∠ACB
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com