【題目】已知:射線于點,半徑,是射線上的一個動點(不與、重合),直線,過的切線交射線

是點在圓內(nèi)移動時符合已知條件的圖形,在點移動的過程中,請你通過觀察、測量、比較,寫出一條與的邊、角或形狀有關的規(guī)律,并說明理由;

請你在圖中畫出點在圓外移動時符合已知條件的圖形,第題中發(fā)現(xiàn)的規(guī)律是否仍然存在?說明理由.

【答案】是等腰三角形證明見解析;(2)符合,證明見解析

【解析】

1)可運用DE時圓O的切線來求解.連接OD,那么OD⊥DE,∠ODA+∠PDE=90°,因為OA=OD,那么∠OAD=∠ODA.在直角三角形OAP中,∠OAP+∠OPA=90°,那么∠EDP=∠APO,由于∠EPD∠APO是對頂角,因此∠EDP=∠EPD,即三角形PED是等腰三角形;
(2)應該符合,和(1)的證法完全一樣,也是通過將相等角進行轉(zhuǎn)換,然后根據(jù)等角的余角相等來得出∠EDP=∠EPD.

是等腰三角形

證明:連接,

,,

,

;

,

,

,

,

即三角形是等腰三角形;

符合.

證明:連接,

,,

,

;

,

,

即三角形是等腰三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的頂點B,C在x軸的正半軸上,反比例函數(shù)y= (k≠0)在第一象限的圖象經(jīng)過頂點A(m,2)和CD邊上的點E(n,),過點E的直線l交x軸于點F,交y軸于點G(0,-2),則點F的坐標是(  )

A. (,0)B. (,0)C. (,0)D. (,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖已知函數(shù)y=(k>0,x>0)的圖象與一次函數(shù)y=mx+5(m<0)的圖象相交不同的點A、B,過點AADx軸于點D,連接AO,其中點A的橫坐標為x0AOD的面積為2.

(1)求k的值及x0=4m的值;

(2)記[x]表示為不超過x的最大整數(shù),例如:[1.4]=1,[2]=2,設t=ODDC,若﹣<m<﹣,求[m2t]值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程kx2-2(k+1)x+k-1=0有兩個不相等的實數(shù)根x1,x2

(1)求k的取值范圍;

(2)是否存在實數(shù)k,使=1成立?若存在,請求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖所示,已知中,的平分線相交于點,試猜想的關系,并證明.

(2)如圖所示,在中,分別是的外角平分線,試猜想的關系_____ (直接寫結果不要證明)

(3)如圖所示,已知的角平分線, 外角的平分線,且與交于點,試猜想的關系_____ (直接寫結果不要證明)

1 2 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知AEAB,AFAC,AE=AB,AF=AC.求證:(1)EC=BF;(2)ECBF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形 ABCD 中,AB=3cm,以 B 為圓心,1cm 長為半徑畫☉B,點 P 在☉B 上移動,連接 AP,并將 AP 繞點 A 逆時針旋轉(zhuǎn) 90° AP',連接 BP',在點 P 移動過程中,BP' 長度的最小值為________cm。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形中,,對角線相交于,過點作點,中點,連接點,交的延長線于點,下列個結論:①;②;③;④,⑤.正確的有( )個.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】初三學生小麗、小杰為了解本校初二學生每周上網(wǎng)的時間,各自在本校進行了抽樣調(diào)查.小麗調(diào)查了初二電腦愛好者中名學生每周上網(wǎng)的時間,算得這些學生平均每周上網(wǎng)時間為小時;小杰從全體名初二學生名單中隨機抽取了名學生,調(diào)查了他們每周上網(wǎng)的時間,算得這些學生平均每周上網(wǎng)時間為小時.小麗與小杰整理各自樣本數(shù)據(jù),如下表所示.

時間段(小時/周)

小麗抽樣人數(shù)

小杰抽樣人數(shù)

(每組可含最低值,不含最高值)

請根據(jù)上述信息,回答下列問題:

你認為哪位學生抽取的樣本具有代表性?答:________;估計該校全體初二學生平均每周上網(wǎng)時間為________小時;

根據(jù)具有代表性的樣本,把上圖中的頻數(shù)分布直方圖補畫完整;

在具有代表性的樣本中,中位數(shù)所在的時間段是________小時/周;

專家建議每周上網(wǎng)小時以上(含小時)的同學應適當減少上網(wǎng)的時間,根據(jù)具有代表性的樣本估計,該校全體初二學生中有多少名同學應適當減少上網(wǎng)的時間?

查看答案和解析>>

同步練習冊答案