【題目】如圖,已知AB為半圓O的直徑,過點(diǎn)BPBOB,連接AP交半圓O于點(diǎn)C,DBP上一點(diǎn),CD是半圓O的切線.

1)求證:CDDP

2)已知半圓O的直徑為,PC1,求CD的長.

【答案】(1)證明見解析,(2)CD

【解析】

1)如圖1(見解析),連接OC,先根據(jù)圓的切線的性質(zhì)得出,從而可得,再根據(jù)直角三角形的性質(zhì)可得,然后根據(jù)等腰三角形的性質(zhì)可得,從而可得,最后根據(jù)等腰三角形的性質(zhì)即可得證;

2)如圖2(見解析),連接OC、BC,先根據(jù)圓周角定理得出,再根據(jù)相似三角形的判定與性質(zhì)可得,從而可求出,然后在中利用勾股定理可求出,最后根據(jù)角的和差、等腰三角形的性質(zhì)可得,結(jié)合題(1)的結(jié)論可得,由此即可得.

1)如圖1,連接OC

CD是半圓O的切線

OCCD,即

PBAB

;

2)如圖2,連接OC、BC

AB是半圓O的直徑

又∵

,即

解得(不符題意,舍去)

中,

由(1)得

由(1)知

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸負(fù)半軸交于點(diǎn),與軸正半軸交于點(diǎn),與軸負(fù)半軸交于點(diǎn),,

1)求點(diǎn)的坐標(biāo)和拋物線的函數(shù)關(guān)系式;

2)點(diǎn)上一點(diǎn)(不與點(diǎn)、重合),過點(diǎn)軸的垂線,交拋物線于點(diǎn),交于點(diǎn),當(dāng)時(shí),求點(diǎn)的坐標(biāo);

3)設(shè)拋物線的對稱軸軸于點(diǎn),在(2)的條件下,點(diǎn)是拋物線對稱軸上一點(diǎn),點(diǎn)是坐標(biāo)平面內(nèi)一點(diǎn),是否存在點(diǎn)、,使以、、為頂點(diǎn)的四邊形是菱形?若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小元步行從家去火車站,走到 6 分鐘時(shí),以同樣的速度回家取物品,然后從家乘出租車趕往火車站,結(jié)果比預(yù)計(jì)步行時(shí)間提前了3 分鐘.小元離家路程S()與時(shí)間t(分鐘)之間的函數(shù)圖象如圖,從家到火車站路程是( )

A.1300 B.1400 C.1600 D.1500

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)著作(九章算術(shù))中有如下問題:今有人持金出五關(guān),前關(guān)二而稅一.次關(guān)三而稅一,次關(guān)四而稅一,次關(guān)五而稅一,次關(guān)六而稅一,并五關(guān)所稅,適重一斤.其意思為今有人持金出五關(guān),第關(guān)所收稅金為持金的,第關(guān)所收稅金為剩余金的,第關(guān)所收稅金為剩余金的,第關(guān)所收稅金為剩余金的,第關(guān)所收稅金為剩余金的,關(guān)所收稅金之和,恰好重斤.若設(shè)這個(gè)人原本持金斤,根據(jù)題意可列方程為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:有一組對角互補(bǔ)的四邊形叫做互補(bǔ)四邊形.

概念理解:

①在互補(bǔ)四邊形中,是一組對角,若 _

②如圖1,在中,點(diǎn)分別在邊上,且求證:四邊形是互補(bǔ)四邊形.

探究發(fā)現(xiàn):如圖2,在等腰中,點(diǎn)分別在邊上, 四邊形是互補(bǔ)四邊形,求證:

推廣運(yùn)用:如圖3,在中,點(diǎn)分別在邊上,四邊形是互補(bǔ)四邊形,若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,點(diǎn)E是直線AB上的點(diǎn),過點(diǎn)E的直線l交直線CD于點(diǎn)F,EG平分∠BEFCD于點(diǎn)G.在直線l繞點(diǎn)E旋轉(zhuǎn)的過程中,圖中∠1,∠2的度數(shù)可以分別是(

A.30°,110°B.56°,70°C.70°,40°D.100°,40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,折疊矩形,具體操作:①點(diǎn)邊上一點(diǎn)(不與重合),把沿所在的直線折疊,點(diǎn)的對稱點(diǎn)為點(diǎn);②過點(diǎn)對折,折痕所在的直線交于點(diǎn)、點(diǎn)的對稱點(diǎn)為點(diǎn)

1)求證:

2)若,

①點(diǎn)在移動(dòng)的過程中,求的最大值.

②如圖2,若點(diǎn)恰在直線上,連接,求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的網(wǎng)格中,有兩個(gè)完全相同的直角三角形紙片,如果把其中一個(gè)三角形紙片先橫向平移格,再縱向平移格,就能使它的一條邊與另一個(gè)三角形紙片的一條邊重合,拼接成一個(gè)四邊形,那么的結(jié)果(

A.只有一個(gè)確定的值B.有兩個(gè)不同的值

C.有三個(gè)不同的值D.有三個(gè)以上不同的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠有甲、乙兩臺(tái)機(jī)器加工同一種零件,已知一小時(shí)甲加工的零件數(shù)與一小時(shí)乙加工的零件數(shù)的和為36個(gè),甲加工80個(gè)零件與乙加工100個(gè)零件的所用時(shí)間相等.求甲、乙兩臺(tái)機(jī)器每小時(shí)分別加工零件多少個(gè)?

查看答案和解析>>

同步練習(xí)冊答案