【題目】A城有某種農(nóng)機30臺,B城有該農(nóng)機40臺,現(xiàn)要將這些農(nóng)機全部運往C,D兩鄉(xiāng),調(diào)運任務(wù)承包給某運輸公司.已知C鄉(xiāng)需要農(nóng)機34臺,D鄉(xiāng)需要農(nóng)機36臺,從A城往C,D兩鄉(xiāng)運送農(nóng)機的費用分別為250元/臺和200元/臺,從B城往C,D兩鄉(xiāng)運送農(nóng)機的費用分別為150元/臺和240元/臺.
(1)設(shè)A城運往C鄉(xiāng)該農(nóng)機x臺,運送全部農(nóng)機的總費用為W元,求W關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(2)現(xiàn)該運輸公司要求運送全部農(nóng)機的總費用不低于16460元,則有多少種不同的調(diào)運方案?將這些方案設(shè)計出來.
(3)現(xiàn)該運輸公司決定對A城運往C鄉(xiāng)的農(nóng)機,從運輸費中每臺減免a元(a≤200)作為優(yōu)惠,其他費用不變,如何調(diào)運,使總費用最少?
【答案】(1)W=140x+12540(0<x≤30);(2)有3種不同的調(diào)運方案,具體見解析;(3)從A城調(diào)往C城30臺,調(diào)往D城0臺,從,B城調(diào)往C城4臺,調(diào)往D城36臺.
【解析】
(1)A城運往C鄉(xiāng)的化肥為x噸,則可得A城運往D鄉(xiāng)的化肥為30-x噸,B城運往C鄉(xiāng)的化肥為34-x噸,B城運往D鄉(xiāng)的化肥為40-(34-x)噸,從而可得出W與x大的函數(shù)關(guān)系.
(2)根據(jù)題意得140x+12540≥16460求得28≤x≤30,于是得到有3種不同的調(diào)運方案,寫出方案即可;
(3)根據(jù)題意得到W=(140-a)x+12540,所以當(dāng)a=200時,y=-60x+12540,此時x=30時,=10740元.于是得到結(jié)論.
本題解析:
(1)W=250x+200(30﹣x)+150(34﹣x)+240(6+x)=140x+12540(0<x≤30);
(2)根據(jù)題意得140x+12540≥16460,∴x≥28,
∵x≤30,∴28≤x≤30,∴有3種不同的調(diào)運方案,
第一種調(diào)運方案:從A城調(diào)往C城28臺,調(diào)往D城2臺,從,B城調(diào)往C城6臺,調(diào)往D城34臺;
第二種調(diào)運方案:從A城調(diào)往C城29臺,調(diào)往D城1臺,從,B城調(diào)往C城5臺,調(diào)往D城35臺;
第三種調(diào)運方案:從A城調(diào)往C城30臺,調(diào)往D城0臺,從,B城調(diào)往C城4臺,調(diào)往D城36臺,
(3)W=x+200(30﹣x)+150(34﹣x)+240(6+x)=x+12540,
所以當(dāng)a=200時,y最小=﹣60x+12540,此時x=30時y最小=10740元.
此時的方案為:從A城調(diào)往C城30臺,調(diào)往D城0臺,從,B城調(diào)往C城4臺,調(diào)往D城36臺.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠C>∠B.如圖①,AD⊥BC于點D,AE平分∠BAC.
(1)如圖①,AD⊥BC于點D,AE平分∠BAC,能猜想出∠DAE與∠B、∠C之間的關(guān)系是什么?并說明理由.
(2)如圖②,AE平分∠BAC,F為AE上的一點,且FD⊥BC于點D,這時∠EFD與∠B、∠C有何數(shù)量關(guān)系?請說明理由.
(3)如圖③,AE平分∠BAC,F為AE延長線上的一點,FD⊥BC于點D,請你寫出這時∠EFD與∠B、∠C之間的數(shù)量關(guān)系(只寫結(jié)論,不必說明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC=60°,AB的垂直平分線分別交AB,AC于點D和點E.若CE=2,則AB的長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與CD相交于點O,OF,OD分別是∠AOE,∠BOE的平分線.
(1)寫出∠DOE的補角;
(2)若∠BOE=62°,求∠AOD和∠EOF的度數(shù);
(3)試問射線OD與OF之間有什么特殊的位置關(guān)系?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE是△ACD的角平分線,B在DA延長線上,AE∥BC,F(xiàn)為BC中點,判斷AE與AF的位置關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)老師在課上給出了這樣一道題目:如圖(1),等邊△ABC邊長為2,過AB邊上一點P作PE⊥AC于E,Q為BC延長線上一點,且AP=CQ,連接PQ交AC于D,求DE的長.
小明同學(xué)經(jīng)過認真思考后認為,可以通過過點P作平行線構(gòu)造等邊三角形的方法來解決這個問題.請根據(jù)小明同學(xué)的思路直接寫出DE的長.
(2)(類比探究)
老師引導(dǎo)同學(xué)繼續(xù)研究:
①等邊△ABC邊長為2,當(dāng)P為BA的延長線上一點時,作PE⊥CA的延長線于點E ,Q為邊BC上一點,且AP=CQ,連接PQ交AC于D.請你在圖(2)中補全圖形并求DE的長.
②已知等邊△ABC,當(dāng)P為AB的延長線上一點時,作PE⊥射線AC于點E, Q為哪一個(①BC邊上;②BC的延長線上;③CB的延長線上)一點,且AP=CQ,連接PQ交直線AC于點D,能使得DE的長度保持不變.( 直接寫出答案的編號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八(2)班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊各10人的比賽成績?nèi)缦卤?10分制):
甲 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲隊成績的中位數(shù)是 分,乙隊成績的眾數(shù)是 分;
(2)計算乙隊的平均成績和方差;
(3)已知甲隊成績的方差是1.4,則成績較為整齊的是 隊.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A(3,0),B(﹣1,0)兩點,與y軸相交于點C(0,﹣3)
(1)求該二次函數(shù)的解析式;
(2)設(shè)E是y軸右側(cè)拋物線上異于點A的一個動點,過點E作x軸的平行線交拋物線于另一點F,過點F作FG垂直于x軸于點G,再過點E作EH垂直于x軸于點H,得到矩形EFGH,則在點E的運動過程中,當(dāng)矩形EFGH為正方形時,求出該正方形的邊長;
(3)設(shè)P點是x軸下方的拋物線上的一個動點,連接PA、PC,求△PAC面積的取值范圍,若△PAC面積為整數(shù)時,這樣的△PAC有幾個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班將舉行知識競賽活動,班長安排小明購買獎品.小明去文化用品店買了兩種大小不同的筆記本一共a本,其中大筆記本單價8元,小筆記本單價5元.若設(shè)買單價5元小筆記本買了x本.
(1)填寫下表:
單價(元/本) | 數(shù)量(本) | 金額(元) | |
小筆記本 | 5 | x | 5x |
大筆記本 | 8 |
(2)列式表示:小明買大小筆記本共花 元.
(3)若小明從班長那里拿了300元,買了40本大小不同的兩種筆記本(a=40),還找回55元給班長,那么小明買了大小筆記本各多少本?
(4)若這個班下次活動中,讓小明剛好花400元購買這兩種大小筆記本,并且購買的小筆記本數(shù)量x要小于60本,但還要超過30本(30<x<60),請列舉小明有可能購買的方案,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com