科目: 來源: 題型:
【題目】在邊長為a的正方形中減掉一個邊長為b的小正方形(a>b)把余下的部分再剪拼成一個長方形.
(1)如圖1,陰影部分的面積是: ;
(2)如圖2,是把圖1重新剪拼成的一個長方形,陰影部分的面積是 ;
(3)比較兩陰影部分面積,可以得到一個公式是 ;
(4)運用你所得到的公式,計算:99.8×100.2.
查看答案和解析>>
科目: 來源: 題型:
【題目】如下圖1,在四邊形ABCD中,點E、F分別是AB、CD的中點.過點E作AB的垂線,過點F作CD的垂線,兩垂線交于點G,連結GA、GB、GC、GD、EF,若∠AGD=∠BGC.
(1)求證:AD=BC;
(2)求證:△AGD∽△EGF;
(3)如圖2,若AD、BC所在直線互相垂直,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,A(0,1),M(3,2),N(4,4).動點P從點A出發(fā),沿y軸以每秒1個單位長的速度向上移動,且過點P的直線l:y=-x+b也隨之移動,設移動時間為t秒.
(1)當t=2時,則AP= ,此時點P的坐標是 。
(2)當t=3時,求過點P的直線l:y=-x+b的解析式?
(3)當直線l:y=-x+b從經(jīng)過點M到點N時,求此時點P向上移動多少秒?
(4)點Q在x軸時,若S△ONQ=8時,請直按寫出點Q的坐標是 。
查看答案和解析>>
科目: 來源: 題型:
【題目】請按照研究問題的步驟依次完成任務.
(問題背景)
(1)如圖1的圖形我們把它稱為“8字形”, 請說理證明∠A+∠B=∠C+∠D.
(簡單應用)
(2)如圖2,AP、CP分別平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度數(shù)(可直接使用問題(1)中的結論)
(問題探究)
(3)如圖3,直線AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE, 若∠ABC=36°,∠ADC=16°,猜想∠P的度數(shù)為 ;
(拓展延伸)
(4)在圖4中,若設∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,試問∠P與∠C、∠B之間的數(shù)量關系為 (用x、y表示∠P) ;
(5)在圖5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P與∠B、D的關系,直接寫出結論 .
查看答案和解析>>
科目: 來源: 題型:
【題目】張明和李強兩名運動愛好者周末相約到東湖綠道進行跑步鍛煉.(1)周日早上6點,張明和李強同時從家出發(fā),分別騎自行車和步行到離家距離分別為4.5千米和1.2千米的綠道落雁島入口匯合,結果同時到達,且張明每分鐘比李強每分鐘多行220米,求張明和李強的速度分別是多少米/分?
(1)兩人到達綠道后約定先跑 6 千米再休息,李強的跑步速度是張明跑步速度的m倍,兩人在同起點,同時出發(fā),結果李強先到目的地n分鐘.
①當m=12,n=5時,求李強跑了多少分鐘?
②張明的跑步速度為 米/分(直接用含m,n的式子表示).
查看答案和解析>>
科目: 來源: 題型:
【題目】甲,乙兩人以相同路線前往距離單位10的培訓中心參加學習.圖中分別表示甲,乙兩人前往目的地所走的路程s隨時間(分)變化的函數(shù)圖象.以下說法:①乙比甲提前12分鐘到達;②甲的平均速度為15千米/小時;③乙走了8后遇到甲;④乙出發(fā)6分鐘后追上甲.其中正確的有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀以下內(nèi)容解答下列問題.
七年級我們學習了數(shù)學運算里第三級第六種開方運算中的平方根、立方根,也知道了開方運算是乘方的逆運算,實際上乘方運算可以看做是“升次”,而開方運算也可以看做是“降次”,也就是說要“升次”可以用乘方,要“降次”可以用開方,即要根據(jù)實際需要采取有效手段“升”或者“降”某字母的次數(shù).本學期我們又學習了整式乘法和因式分解,請回顧學習過程中的法則、公式以及計算,解答下列問題:
(1)對照乘方與開方的關系和作用,你認為因式分解的作用也可以看做是 .
(2)對于多項式x3﹣5x2+x+10,我們把x=2代入此多項式,發(fā)現(xiàn)x=2能使多項式x3﹣5x2+x+10的值為0,由此可以斷定多項式x3﹣5x2+x+10中有因式(x﹣2),(注:把x=a代入多項式,能使多項式的值為0,則多項式一定含有因式(x﹣a)),于是我們可以把多項式寫成:x3﹣5x2+x+10=(x﹣2)(x2+mx+n),分別求出m、n后再代入x3﹣5x2+x+10=(x﹣2)(x2+mx+n),就可以把多項式x3﹣5x2+x+10因式分解,這種因式分解的方法叫“試根法”.
①求式子中m、n的值;
②用“試根法”分解多項式x3+5x2+8x+4.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知甲同學手中藏有三張分別標有數(shù)字、、1的卡片,乙同學手中藏有三張分別標有數(shù)字1、3、2的卡片,卡片外形相同.現(xiàn)從甲乙兩人手中各任取一張卡片,并將它們的數(shù)字分別記為a,b.
(1)請你用樹形圖或列表法列出所有可能的結果;
(2)現(xiàn)制定一個游戲規(guī)則:若所選出的a,b能使得ax2+bx+1=0有兩個不相等的實數(shù)根,則甲獲勝;否則乙獲勝.請問這樣的游戲規(guī)則公平嗎?請用概率知識解釋.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知AB∥CD,C在D的右側(cè),BE平分∠ABC,DE平分∠ADC,BE、DE所在直線交于點E,∠ADC=70°.
(1)求∠EDC的度數(shù);
(2)若∠ABC=n°,求∠BED的度數(shù)(用含n的代數(shù)式表示);
(3)將線段BC沿DC方向平移,使得點B在點A的右側(cè),其他條件不變,畫出圖形并判斷∠BED的度數(shù)是否改變,若改變,求出它的度數(shù)(用含n的式子表示);若不改變,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】完成下面的推理.
已知:如圖,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD.
試說明:∠EGF=90°.
解:因為HG∥AB(已知),
所以∠1=∠3( ).
又因為HG∥CD(已知),
所以∠2=∠4( ).
因為AB∥CD(已知),
所以∠BEF+ =180°( ).
又因為EG平分∠BEF(已知),
所以∠1=∠ ( ).
又因為FG平分∠EFD(已知),
所以∠2=∠ ( ),
所以∠1+∠2=( + ).
所以∠1+∠2=90°.
所以∠3+∠4=90°( ),即∠EGF=90°.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com