科目: 來源: 題型:
【題目】在平面直角坐標系中,二次函數(shù)的對稱軸為.點在直線上.
(1)求, 的值;
(2)若點在二次函數(shù)上,求的值;
(3)當二次函數(shù)與直線相交于兩點時,設(shè)左側(cè)的交點為,若,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在矩形中,點為邊中點,點為邊中點;點, 為邊三等分點, , 為邊三等分點.小瑞分別用不同的方式連接矩形對邊上的點,如圖2,圖3所示.那么,圖2中四邊形的面積與圖3中四邊形的面積相等嗎?
(1)小瑞的探究過程如下
在圖2中,小瑞發(fā)現(xiàn), ;
在圖3中,小瑞對四邊形面積的探究如下. 請你將小瑞的思路填寫完整:
設(shè),
∵
∴,且相似比為,得到
∵
∴,且相似比為,得到
又∵,
∴
∴, ,
∴,則(填寫“”,“”或“”)
(2)小瑞又按照圖4的方式連接矩形對邊上的點.則.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:在矩形ABCD中,AB=10,BC=12,四邊形EFGH的三個頂點E、F、H分別在矩形ABCD邊AB、BC、DA上,AE=2.
(1)如圖①,當四邊形EFGH為正方形時,求△GFC的面積;
(2)如圖②,當四邊形EFGH為菱形,且BF=a時,求△GFC的面積(用a表示);
(3)在(2)的條件下,△GFC的面積能否等于2?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】填寫證明的理由:
已知,如圖AB∥CD,EF、CG分別是∠ABC、∠ECD的角平分線.
求證:EF∥CG
證明:∵AB∥CD(已知)
∴∠AEC=∠ECD( )
又EF平分∠AEC、CG平分∠ECD(已知)
∴∠1=∠ ,∠2=∠ (角平分線的定義)
∴∠1=∠2( )
∴EF∥CG( )
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC中,點O是邊AC上一個動點,過O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F.
(1)求證:OE=OF;
(2)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.
(3)當點O運動到何處,且△ABC滿足什么條件時,四邊形AECF是正方形?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,李師傅想用長為80米的柵欄,再借助教學(xué)樓的外墻圍成一個矩形的活動區(qū). 已知教學(xué)樓外墻長50米,設(shè)矩形的邊米,面積為平方米.
(1)請寫出活動區(qū)面積與之間的關(guān)系式,并指出的取值范圍;
(2)當為多少米時,活動區(qū)的面積最大?最大面積是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)與反比例函數(shù)交于點, .
(1)分別求出反比例函數(shù)和一次函數(shù)的表達式;
(2)根據(jù)函數(shù)圖象,直接寫出不等式的解集.
查看答案和解析>>
科目: 來源: 題型:
【題目】高速公路某收費站出城方向有編號為的五個小客車收費出口,假定各收費出口每20分鐘通過小客車的數(shù)量分別都是不變的.同時開放其中的某兩個收費出口,這兩個出口20分鐘一共通過的小客車數(shù)量記錄如下:
收費出口編號 | |||||
通過小客車數(shù)量(輛) | 260 | 330 | 300 | 360 | 240 |
在五個收費出口中,每20分鐘通過小客車數(shù)量最多的一個出口的編號是___________.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師提出如下問題:
尺規(guī)作圖:作已知角的角平分線.
已知:如圖,已知.
求作: 的角平分線.
小霞的作法如下:
(1)如圖,在平面內(nèi)任取一點;
(2)以點為圓心, 為半徑作圓,交射線于點,交射線于點;
(3)連接,過點作射線垂直線段,交⊙于點;
(4)連接.
所以射線為所求.
老師說:“小霞的作法正確.”
請回答:小霞的作圖依據(jù)是___________________________________________.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下面材料:
點A、B在數(shù)軸上分別表示實數(shù)a、b,A、B兩點之間的距離表示為∣AB∣.
當A、B兩點中有一點在原點時,不妨設(shè)點A在原點,如圖1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;
當A、B兩點都不在原點時,如圖2,點A、B都在原點的右邊
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣= =∣a-b∣;
如圖3,當點A、B都在原點的左邊,
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣==∣a-b∣;
如圖4,當點A、B在原點的兩邊,
∣AB∣=∣OB∣+∣OA∣=∣a∣+∣b∣= =∣a-b∣;
回答下列問題:
(1)數(shù)軸上表示1和6的兩點之間的距離是 ,數(shù)軸上表示2和-3的兩點之間的距離是 ;
(2)數(shù)軸上若點A表示的數(shù)是x,點B表示的數(shù)是-4,則點A和B之間的距離是 ,若∣AB∣=3,那么x為 ;
(3)當x是 時,代數(shù)式;
(4)若點A表示的數(shù),點B與點A的距離是10,且點B在點A的右側(cè),動點P、Q同時從A、B出發(fā)沿數(shù)軸正方向運動,點P的速度是每秒3個單位長度,點Q的速度是每秒個單位長度,求運動幾秒后,點Q與點P 相距1個單位?(請寫出必要的求解過程)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com